RESUMO
Glutaminyl cyclase (QC) modifies N-terminal glutamine or glutamic acid residues of target proteins into cyclic pyroglutamic acid (pGlu). Here, we report the biochemical and functional analysis of Plasmodium QC. We show that sporozoites of QC-null mutants of rodent and human malaria parasites are recognized by the mosquito immune system and melanized when they reach the hemocoel. Detailed analyses of rodent malaria QC-null mutants showed that sporozoite numbers in salivary glands are reduced in mosquitoes infected with QC-null or QC catalytically dead mutants. This phenotype can be rescued by genetic complementation or by disrupting mosquito melanization or phagocytosis by hemocytes. Mutation of a single QC-target glutamine of the major sporozoite surface protein (circumsporozoite protein; CSP) of the rodent parasite Plasmodium berghei also results in melanization of sporozoites. These findings indicate that QC-mediated posttranslational modification of surface proteins underlies evasion of killing of sporozoites by the mosquito immune system.
Assuntos
Aminoaciltransferases , Culicidae , Malária , Processamento de Proteína Pós-Traducional , Esporozoítos , Aminoaciltransferases/imunologia , Animais , Culicidae/imunologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Malária/genética , Malária/imunologia , Malária/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologiaRESUMO
Parasites exist within most ecological niches, often transitioning through biologically and chemically complex host environments over the course of their parasitic life cycles. While the development of technologies for genetic engineering has revolutionised the field of functional genomics, parasites have historically been less amenable to such modification. In light of this, parasitologists have often been at the forefront of adopting new small-molecule technologies, repurposing drugs into biological tools and probes. Over the last decade, activity-based protein profiling (ABPP) has evolved into a powerful and versatile chemical proteomic platform for characterising the function of enzymes. Central to ABPP is the use of activity-based probes (ABPs), which covalently modify the active sites of enzyme classes ranging from serine hydrolases to glycosidases. The application of ABPP to cellular systems has contributed vastly to our knowledge on the fundamental biology of a diverse range of organisms and has facilitated the identification of potential drug targets in many pathogens. In this chapter, we provide a comprehensive review on the different forms of ABPP that have been successfully applied to parasite systems, and highlight key biological insights that have been enabled through their application.
Assuntos
Parasitos/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Infecções por Protozoários/metabolismo , Infecções por Protozoários/parasitologia , Animais , Domínio Catalítico , Humanos , Parasitos/enzimologia , Proteoma/química , Infecções por Protozoários/enzimologiaRESUMO
Calcium-dependent protein kinases (CDPKs) are conserved in plants and apicomplexan parasites. In Toxoplasma gondii, TgCDPK3 regulates parasite egress from the host cell in the presence of a calcium-ionophore. The targets and the pathways that the kinase controls, however, are not known. To identify pathways regulated by TgCDPK3, we measured relative phosphorylation site usage in wild type and TgCDPK3 mutant and knock-out parasites by quantitative mass-spectrometry using stable isotope-labeling with amino acids in cell culture (SILAC). This revealed known and novel phosphorylation events on proteins predicted to play a role in host-cell egress, but also a novel function of TgCDPK3 as an upstream regulator of other calcium-dependent signaling pathways, as we also identified proteins that are differentially phosphorylated prior to egress, including proteins important for ion-homeostasis and metabolism. This observation is supported by the observation that basal calcium levels are increased in parasites where TgCDPK3 has been inactivated. Most of the differential phosphorylation observed in CDPK3 mutants is rescued by complementation of the mutants with a wild type copy of TgCDPK3. Lastly, the TgCDPK3 mutants showed hyperphosphorylation of two targets of a related calcium-dependent kinase (TgCDPK1), as well as TgCDPK1 itself, indicating that this latter kinase appears to play a role downstream of TgCDPK3 function. Overexpression of TgCDPK1 partially rescues the egress phenotype of the TgCDPK3 mutants, reinforcing this conclusion. These results show that TgCDPK3 plays a pivotal role in regulating tachyzoite functions including, but not limited to, egress.
Assuntos
Sinalização do Cálcio/genética , Cálcio/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Toxoplasma/genética , Técnicas de Inativação de Genes , Fosforilação , Proteínas Quinases/biossíntese , Proteoma , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismoRESUMO
The malaria merozoite invades erythrocytes in the vertebrate host. Iterative rounds of asexual intraerythrocytic replication result in disease. Proteases play pivotal roles in erythrocyte invasion, but little is understood about their mode of action. The Plasmodium falciparum malaria merozoite surface sheddase, PfSUB2, is one such poorly characterized example. We have examined the molecular determinants that underlie the mechanisms by which PfSUB2 is trafficked initially to invasion-associated apical organelles (micronemes) and then across the surface of the free merozoite. We show that authentic promoter activity is important for correct localization of PfSUB2, likely requiring canonical features within the intergenic region 5' of the pfsub2 locus. We further demonstrate that trafficking of PfSUB2 beyond an early compartment in the secretory pathway requires autocatalytic protease activity. Finally, we show that the PfSUB2 transmembrane domain is required for microneme targeting, while the cytoplasmic domain is essential for surface translocation of the protease to the parasite posterior following discharge from micronemes. The interplay of pre- and post-translational regulatory elements that coordinate subcellular trafficking of PfSUB2 provides the parasite with exquisite control over enzyme-substrate interactions.
Assuntos
Epitopos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/metabolismo , Subtilisinas/metabolismo , Epitopos/genética , Epitopos/imunologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Expressão Gênica/genética , Expressão Gênica/imunologia , Malária Falciparum/genética , Malária Falciparum/imunologia , Merozoítos/imunologia , Merozoítos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Transporte Proteico/genética , Transporte Proteico/imunologia , Proteólise , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Subtilisinas/genética , Subtilisinas/imunologiaRESUMO
Although there have been numerous advances in our understanding of how apicomplexan parasites such as Toxoplasma gondii enter host cells, many of the signaling pathways and enzymes involved in the organization of invasion mediators remain poorly defined. We recently performed a forward chemical-genetic screen in T. gondii and identified compounds that markedly enhanced infectivity. Although molecular dissection of invasion has benefited from the use of small-molecule inhibitors, the mechanisms underlying induction of invasion by small-molecule enhancers have never been described. Here we identify the Toxoplasma ortholog of human APT1, palmitoyl protein thioesterase-1 (TgPPT1), as the target of one class of small-molecule enhancers. Inhibition of this uncharacterized thioesterase triggered secretion of invasion-associated organelles, increased motility and enhanced the invasive capacity of tachyzoites. We demonstrate that TgPPT1 is a bona fide depalmitoylase, thereby establishing an important role for dynamic and reversible palmitoylation in host-cell invasion by T. gondii.
Assuntos
Inibidores Enzimáticos/farmacologia , Células Epiteliais/parasitologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tioléster Hidrolases/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia , Animais , Linhagem Celular , Cumarínicos/química , Cumarínicos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidadeRESUMO
Toxoplasma gondii is a member of the phylum Apicomplexa that includes several important human pathogens, such as Cryptosporidium and Plasmodium falciparum, the causative agent of human malaria. It is an obligate intracellular parasite that can cause severe disease in congenitally infected neonates and immunocompromised individuals. Despite the importance of attachment and invasion to the success of the parasite, little is known about the underlying mechanisms that drive these processes. Here we describe a screen to identify small molecules that block the process of host cell invasion by the T. gondii parasite. We identified a small molecule that specifically and irreversibly blocks parasite attachment and subsequent invasion of host cells. Using tandem orthogonal proteolysis-activity-based protein profiling, we determined that this compound covalently modifies a single cysteine residue in a poorly characterized protein homologous to the human protein DJ-1. Mutation of this key cysteine residue in the native gene sequence resulted in parasites that were resistant to inhibition of host cell attachment and invasion by the compound. Further analysis of the invasion phenotype confirmed that modification of Cys127 on TgDJ-1 resulted in a block of microneme secretion and motility, even in the presence of direct stimulators of calcium release. Together, our results suggest that TgDJ-1 plays an important role that is likely downstream of the calcium flux required for microneme secretion, parasite motility, and subsequent invasion of host cells.
Assuntos
Proteínas de Protozoários/fisiologia , Toxoplasma/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Citosol/metabolismo , Primers do DNA , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Toxoplasma/efeitos dos fármacos , Toxoplasma/genéticaRESUMO
The diverse functional roles that proteases play in basic biological processes make them essential for virtually all organisms. Not surprisingly, proteolysis is also a critical process required for many aspects of pathogenesis. In particular, obligate intracellular parasites must precisely coordinate proteolytic events during their highly regulated life cycle inside multiple host cell environments. Advances in chemical, proteomic and genetic tools that can be applied to parasite biology have led to an increased understanding of the complex events centrally regulated by proteases. In this review, we outline recent advances in our knowledge of specific proteolytic enzymes in two medically relevant apicomplexan parasites: Plasmodium falciparum and Toxoplasma gondii. Efforts over the last decade have begun to provide a map of key proteotolyic events that are essential for both parasite survival and propagation inside host cells. These advances in our molecular understanding of proteolytic events involved in parasite pathogenesis provide a foundation for the validation of new networks and enzyme targets that could be exploited for therapeutic purposes. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Assuntos
Apicomplexa/enzimologia , Doença/etiologia , Interações Hospedeiro-Parasita , Imunidade/fisiologia , Peptídeo Hidrolases/fisiologia , Animais , Apicomplexa/imunologia , Apicomplexa/patogenicidade , Apicomplexa/fisiologia , Doença/genética , Desenho de Fármacos , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade/genética , Imunidade/imunologia , Modelos Biológicos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Infecções por Protozoários/etiologia , Infecções por Protozoários/imunologia , Infecções por Protozoários/metabolismo , Infecções por Protozoários/prevenção & controleRESUMO
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Assuntos
Parasitos , Plasmodium , Infecções por Protozoários , Toxoplasma , Animais , Humanos , Interações Hospedeiro-Parasita , Infecções por Protozoários/parasitologia , Parasitos/fisiologia , Plasmodium/fisiologiaRESUMO
Acetyl-coenzyme A is an important metabolite and regulates diverse cellular processes, including metabolism and epigenetics. In this issue of Cell Chemical Biology, Summers et al. (2022) describe an essential parasite enzyme, acetyl-coenzyme A synthetase, as a target of two antimalarial small molecules active against liver and blood stages of the parasite.
Assuntos
Antimaláricos , Parasitos , Plasmodium , Acetilcoenzima A/metabolismo , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Plasmodium/metabolismo , Plasmodium falciparum/metabolismoRESUMO
Cellular barcoding techniques are powerful tools to understand microbial pathogenesis. However, barcoding strategies have not been broadly applied to protozoan parasites, which have unique genomic structures and virulence strategies compared with viral and bacterial pathogens. Here, we present a CRISPR-based method to barcode protozoa, which we successfully apply to Toxoplasma gondii and Trypanosoma brucei. Using libraries of barcoded T. gondii, we evaluate shifts in the population structure from acute to chronic infection of mice. Contrary to expectation, most barcodes were present in the brain one month post-intraperitoneal infection in both inbred CBA/J and outbred Swiss mice. Although parasite cyst number and barcode diversity declined over time, barcodes representing a minor fraction of the inoculum could become a dominant population in the brain by three months post-infection. These data establish a cellular barcoding approach for protozoa and evidence that the blood-brain barrier is not a major bottleneck to colonization by T. gondii.
Assuntos
Toxoplasma , Camundongos , Animais , Toxoplasma/genética , Proteínas de Protozoários/genética , Camundongos Endogâmicos CBA , Virulência , Encéfalo/metabolismoRESUMO
The malaria parasite Plasmodium falciparum invades erythrocytes where it replicates to produce invasive merozoites, which eventually egress to repeat the cycle. Merozoite surface protein-1 (MSP1), a prime malaria vaccine candidate and one of the most abundant components of the merozoite surface, is implicated in the ligand-receptor interactions leading to invasion. MSP1 is extensively proteolytically modified, first just before egress and then during invasion. These primary and secondary processing events are mediated respectively, by two parasite subtilisin-like proteases, PfSUB1 and PfSUB2, but the function and biological importance of the processing is unknown. Here, we examine the regulation and significance of MSP1 processing. We show that primary processing is ordered, with the primary processing site closest to the C-terminal end of MSP1 being cleaved last, irrespective of polymorphisms throughout the rest of the molecule. Replacement of the secondary processing site, normally refractory to PfSUB1, with a PfSUB1-sensitive site, is deleterious to parasite growth. Our findings show that correct spatiotemporal regulation of MSP1 maturation is crucial for the function of the protein and for maintenance of the parasite asexual blood-stage life cycle.
Assuntos
Proteína 1 de Superfície de Merozoito/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Subtilisina/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Processamento de Proteína Pós-TraducionalRESUMO
The ability of an organism to sense and respond to environmental redox fluctuations relies on a signaling network that is incompletely understood in apicomplexan parasites such as Toxoplasma gondii. The impact of changes in redox upon the development of this intracellular parasite is not known. Here, we provide a revised collection of 58 genes containing domains related to canonical antioxidant function, with their encoded proteins widely dispersed throughout different cellular compartments. We demonstrate that addition of exogenous H2O2 to human fibroblasts infected with T. gondii triggers a Ca2+ flux in the cytosol of intracellular parasites that can induce egress. In line with existing models, egress triggered by exogenous H2O2 is reliant upon both Calcium-Dependent Protein Kinase 3 and diacylglycerol kinases. Finally, we show that the overexpression a glutaredoxin-roGFP2 redox sensor fusion protein in the parasitophorous vacuole severely impacts parasite replication. These data highlight the rich redox network that exists in T. gondii, evidencing a link between extracellular redox and intracellular Ca2+ signaling that can culminate in parasite egress. Our findings also indicate that the redox potential of the intracellular environment contributes to normal parasite growth. Combined, our findings highlight the important role of redox as an unexplored regulator of parasite biology.
Assuntos
Toxoplasma , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Peróxido de Hidrogênio , Oxirredução , Toxoplasma/metabolismoRESUMO
Therapeutic payload delivery to the central nervous system (CNS) remains a major challenge in gene therapy. Recent studies using function-driven evolution of adeno-associated virus (AAV) vectors have successfully identified engineered capsids with improved blood-brain barrier (BBB) penetration and CNS tropism in mouse. However, these strategies require transgenic animals and thus are limited to rodents. To address this issue, we developed a directed evolution approach based on recovery of capsid library RNA transcribed from CNS-restricted promoters. This RNA-driven screen platform, termed TRACER (Tropism Redirection of AAV by Cell-type-specific Expression of RNA), was tested in the mouse with AAV9 peptide display libraries and showed rapid emergence of dominant sequences. Ten individual variants were characterized and showed up to 400-fold higher brain transduction over AAV9 following systemic administration. Our results demonstrate that the TRACER platform allows rapid selection of AAV capsids with robust BBB penetration and CNS tropism in non-transgenic animals.
RESUMO
Protein palmitoylation is a dynamic post-translational modification (PTM) important for cellular functions such as protein stability, trafficking, localization, and protein-protein interactions. S-palmitoylation occurs via the addition of palmitate to cysteine residues via a thioester linkage, catalyzed by palmitoyl acyl transferases (PATs), with removal of the palmitate catalyzed by acyl protein thioesterases (APTs) and palmitoyl-protein thioesterases (PPTs). Tools that target the regulators of palmitoylation-PATs, APTs and PPTs-will improve understanding of this essential PTM. Here, we describe the synthesis and application of a cell-permeable activity-based probe (ABP) that targets APTs in intact mammalian cells and the parasite Toxoplasma gondii. Using a focused library of substituted chloroisocoumarins, we identified a probe scaffold with nanomolar affinity for human APTs (HsAPT1 and HsAPT2) and synthesized a fluorescent ABP, JCP174-BODIPY TMR (JCP174-BT). We use JCP174-BT to profile HsAPT activity in situ in mammalian cells, to detect an APT in T. gondii (TgPPT1). We show discordance between HsAPT activity levels and total protein concentration in some cell lines, indicating that total protein levels may not be representative of APT activity in complex systems, highlighting the utility of this probe.
Assuntos
Sondas Moleculares/metabolismo , Animais , Mamíferos , Processamento de Proteína Pós-Traducional , Tioléster Hidrolases , Toxoplasma/enzimologiaRESUMO
Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson's disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondiiIMPORTANCE Apicomplexan parasites such as Toxoplasma and Plasmodium are obligate intracellular parasites that require the protective environment of a host cell in order to replicate and survive within a host organism. These parasites secrete effector proteins from specialized apical organelles to select and invade a chosen host cell. The secretion of these organelles is a tightly regulated process coordinated by endogenous small molecules and calcium-dependent protein kinases. We previously identified the Toxoplasma orthologue of the highly conserved protein DJ-1 as a regulator of microneme secretion, but the molecular basis for this was not known. We have now identified the molecular mechanism for how TgDJ-1 regulates microneme secretion. TgDJ-1 interacts with the kinase responsible for the secretion of these organelles (calcium-dependent kinase 1) and synergizes with calcium to potentiate kinase activity. This interaction is direct, phosphodependent, and necessary for the normal secretion of these important organelles.
Assuntos
Exossomos/metabolismo , Proteína Desglicase DJ-1/química , Proteína Desglicase DJ-1/metabolismo , Proteínas Quinases/metabolismo , Toxoplasma/enzimologia , Toxoplasma/metabolismo , Cálcio/metabolismo , Cristalografia por Raios X , Exocitose , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação ProteicaRESUMO
Bleomycin hydrolase (BLMH) is a neutral cysteine aminopeptidase that has been ascribed roles in many physiological and pathological processes, yet its primary biological function remains enigmatic. In this work, we describe the results of screening of a library of fluorogenic substrates to identify non-natural amino acids that are optimally recognized by BLMH. This screen identified several substrates with kcat/KM values that are substantially improved over the previously reported fluorogenic substrates for this enzyme. The substrate sequences were used to design activity-based probes that showed potent labeling of recombinant BLMH as well as endogenously expressed BLMH in cell extracts, and in intact cells. Importantly, we identify potent BLMH inhibitors that are able to fully inhibit endogenous BLMH activity in intact cells. These probes and inhibitors will be valuable new reagents to study BLMH function in cellular and animal models of human diseases where BLMH is likely to be involved.
Assuntos
Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Animais , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Camundongos , Modelos Moleculares , Sondas Moleculares/síntese química , Sondas Moleculares/química , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Post-translational modifications (PTMs) such as palmitoylation are critical for the lytic cycle of the protozoan parasite Toxoplasma gondii. While palmitoylation is involved in invasion, motility, and cell morphology, the proteins that utilize this PTM remain largely unknown. Using a chemical proteomic approach, we report a comprehensive analysis of palmitoylated proteins in T. gondii, identifying a total of 282 proteins, including cytosolic, membrane-associated, and transmembrane proteins. From this large set of palmitoylated targets, we validate palmitoylation of proteins involved in motility (myosin light chain 1, myosin A), cell morphology (PhIL1), and host cell invasion (apical membrane antigen 1, AMA1). Further studies reveal that blocking AMA1 palmitoylation enhances the release of AMA1 and other invasion-related proteins from apical secretory organelles, suggesting a previously unrecognized role for AMA1. These findings suggest that palmitoylation is ubiquitous throughout the T. gondii proteome and reveal insights into the biology of this important human pathogen.
Assuntos
Ácidos Palmíticos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteínas/metabolismo , Proteoma/análise , Toxoplasma/química , Endocitose , Humanos , Locomoção , Toxoplasma/citologia , Toxoplasma/fisiologia , VirulênciaRESUMO
Clostridium difficile infection (CDI) is a worldwide health threat that is typically triggered by the use of broad-spectrum antibiotics, which disrupt the natural gut microbiota and allow this Gram-positive anaerobic pathogen to thrive. The increased incidence and severity of disease coupled with decreased response, high recurrence rates, and emergence of multiple antibiotic-resistant strains have created an urgent need for new therapies. We describe pharmacological targeting of the cysteine protease domain (CPD) within the C. difficile major virulence factor toxin B (TcdB). Through a targeted screen with an activity-based probe for this protease domain, we identified a number of potent CPD inhibitors, including one bioactive compound, ebselen, which is currently in human clinical trials for a clinically unrelated indication. This drug showed activity against both major virulence factors, TcdA and TcdB, in biochemical and cell-based studies. Treatment in a mouse model of CDI that closely resembles the human infection confirmed a therapeutic benefit in the form of reduced disease pathology in host tissues that correlated with inhibition of the release of the toxic glucosyltransferase domain (GTD). Our results show that this non-antibiotic drug can modulate the pathology of disease and therefore could potentially be developed as a therapeutic for the treatment of CDI.
Assuntos
Antibacterianos/uso terapêutico , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/tratamento farmacológico , Virulência/efeitos dos fármacos , Animais , Azóis/uso terapêutico , Isoindóis , Camundongos , Compostos Organosselênicos/uso terapêuticoRESUMO
Chemical biology and the techniques the field encompasses provide scientists with the means to address biological questions in ever-evolving and technically sophisticated ways. They facilitate the dissection of molecular mechanisms of cell phenomena on timescales not achievable by other means. Libraries of small molecules, bioorthogonal chemistries and technical advances in mass-spectrometry techniques enable the modern chemical biologist to tackle even the most difficult of biological questions. It is because of their broad applicability that these approaches are well suited to systems less tractable to more classical genetic methods. As such, the parasite community has embraced them with great success. Some of these successes and the continuing evolution of chemical biology applied to apicomplexans will be discussed.