Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 187(9): 2080-2094, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28734730

RESUMO

Resistance to antiangiogenic therapy in glioblastoma (GBM) patients may involve hypoxia-induced expression of C-X-C motif chemokine receptor 4 (CXCR4) on invading tumor cells, macrophage/microglial cells (MGCs), and glioma stem cells (GSCs). We determined whether antagonizing CXCR4 with POL5551 disrupts anti-vascular endothelial growth factor (VEGF) therapy-induced glioma growth and dissemination. Mice bearing orthotopic CT-2A or GL261 gliomas received POL5551 and/or anti-VEGF antibody B20-4.1.1. Brain tissue was analyzed for tumor volume, invasiveness, hypoxia, vascular density, proliferation, apoptosis, GSCs, and MGCs. Glioma cells were evaluated for CXCR4 expression and polymorphism and POL5551's effects on CXCR4 ligand binding, cell viability, and migration. No CXCR4 mutations were identified. POL5551 inhibited CXCR4 binding to its ligand, stromal cell-derived factor-1α, and reduced hypoxia- and stromal cell-derived factor-1α-mediated migration dose-dependently but minimally affected cell viability. In vivo, B20-4.1.1 increased hypoxic foci and invasiveness, as seen in GBM patients receiving anti-VEGF therapy. Combination of POL5551 and B20-4.1.1 reduced both glioma invasiveness by 16% to 39% and vascular density compared to B20-4.1.1 alone in both glioma models. Reduced populations of GSCs and MGCs were also seen in CT-2A tumors. POL5551 concentrations, evaluated by mass spectrometry, were higher in tumors than in neighboring brain tissues, likely accounting for the results. Inhibition of CXCR4-regulated tumoral, stem cell, and immune mechanisms by adjunctive CXCR4 antagonists may help overcome antiangiogenic therapy resistance, benefiting GBM patients.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anticorpos/uso terapêutico , Glioma/tratamento farmacológico , Receptores CXCR4/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/metabolismo , Glioma/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Proteínas/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
Am J Clin Pathol ; 157(6): 908-926, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34999755

RESUMO

OBJECTIVES: Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may develop end-stage lung disease requiring lung transplantation. We report the clinical course, pulmonary pathology with radiographic correlation, and outcomes after lung transplantation in three patients who developed chronic respiratory failure due to postacute sequelae of SARS-CoV-2 infection. METHODS: A retrospective histologic evaluation of explanted lungs due to coronavirus disease 2019 was performed. RESULTS: None of the patients had known prior pulmonary disease. The major pathologic findings in the lung explants were proliferative and fibrotic phases of diffuse alveolar damage, interstitial capillary neoangiogenesis, and mononuclear inflammation, specifically macrophages, with varying numbers of T and B lymphocytes. The fibrosis varied from early collagen deposition to more pronounced interstitial collagen deposition; however, pulmonary remodeling with honeycomb change was not present. Other findings included peribronchiolar metaplasia, microvascular thrombosis, recanalized thrombi in muscular arteries, and pleural adhesions. No patients had either recurrence of SARS-CoV-2 infection or allograft rejection following transplant at this time. CONCLUSIONS: The major pathologic findings in the lung explants of patients with SARS-CoV-2 infection suggest ongoing fibrosis, prominent macrophage infiltration, neoangiogenesis, and microvascular thrombosis. Characterization of pathologic findings could help develop novel management strategies.


Assuntos
COVID-19 , Transplante de Pulmão , Trombose , COVID-19/complicações , Fibrose , Humanos , Pulmão/patologia , Transplante de Pulmão/efeitos adversos , Estudos Retrospectivos , SARS-CoV-2 , Trombose/patologia
3.
Mol Cancer Ther ; 20(9): 1584-1591, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224367

RESUMO

Inhibition of mTORC1 signaling has been shown to diminish growth of meningiomas and schwannomas in preclinical studies, and clinical data suggest that everolimus, an orally administered mTORC1 inhibitor, may slow tumor progression in a subset of patients with neurofibromatosis type 2 (NF2) with vestibular schwannoma. To assess the pharmacokinetics, pharmacodynamics, and potential mechanisms of treatment resistance, we performed a presurgical (phase 0) clinical trial of everolimus in patients undergoing elective surgery for vestibular schwannoma or meningiomas. Eligible patients with meningioma or vestibular schwannoma requiring tumor resection enrolled on study received everolimus 10 mg daily for 10 days immediately prior to surgery. Everolimus blood levels were determined immediately before and after surgery. Tumor samples were collected intraoperatively. Ten patients completed protocol therapy. Median pre- and postoperative blood levels of everolimus were found to be in a high therapeutic range (17.4 ng/mL and 9.4 ng/mL, respectively). Median tumor tissue drug concentration determined by mass spectrometry was 24.3 pg/mg (range, 9.2-169.2). We observed only partial inhibition of phospho-S6 in the treated tumors, indicating incomplete target inhibition compared with control tissues from untreated patients (P = 0.025). Everolimus led to incomplete inhibition of mTORC1 and downstream signaling. These data may explain the limited antitumor effect of everolimus observed in clinical studies for patients with NF2 and will inform the design of future preclinical and clinical studies targeting mTORC1 in meningiomas and schwannomas.


Assuntos
Antineoplásicos/uso terapêutico , Everolimo/uso terapêutico , Neoplasias Meníngeas/tratamento farmacológico , Meningioma/tratamento farmacológico , Neuroma Acústico/tratamento farmacológico , Adulto , Idoso , Ensaios Clínicos como Assunto , Feminino , Seguimentos , Humanos , Masculino , Neoplasias Meníngeas/patologia , Meningioma/patologia , Pessoa de Meia-Idade , Neuroma Acústico/patologia , Prognóstico , Estudos Prospectivos
4.
Cancer Immunol Res ; 9(11): 1298-1315, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462284

RESUMO

Substantial progress has been made in understanding how tumors escape immune surveillance. However, few measures to counteract tumor immune evasion have been developed. Suppression of tumor antigen expression is a common adaptive mechanism that cancers use to evade detection and destruction by the immune system. Epigenetic modifications play a critical role in various aspects of immune invasion, including the regulation of tumor antigen expression. To identify epigenetic regulators of tumor antigen expression, we established a transplantable syngeneic tumor model of immune escape with silenced antigen expression and used this system as a platform for a CRISPR-Cas9 suppressor screen for genes encoding epigenetic modifiers. We found that disruption of the genes encoding either of the chromatin modifiers activating transcription factor 7-interacting protein (Atf7ip) or its interacting partner SET domain bifurcated histone lysine methyltransferase 1 (Setdb1) in tumor cells restored tumor antigen expression. This resulted in augmented tumor immunogenicity concomitant with elevated endogenous retroviral (ERV) antigens and mRNA intron retention. ERV disinhibition was associated with a robust type I interferon response and increased T-cell infiltration, leading to rejection of cells lacking intact Atf7ip or Setdb1. ATF7IP or SETDB1 expression inversely correlated with antigen processing and presentation pathways, interferon signaling, and T-cell infiltration and cytotoxicity in human cancers. Our results provide a rationale for targeting Atf7ip or Setdb1 in cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias/genética , Proteínas Repressoras/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células , Humanos , Camundongos , Camundongos Nus
5.
Front Aging Neurosci ; 12: 585218, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192479

RESUMO

Microvascular rarefaction, or the decrease in vascular density, has been described in the cerebrovasculature of aging humans, rats, and, more recently, mice in the presence and absence of age-dependent diseases. Given the wide use of mice in modeling age-dependent human diseases of the cerebrovasculature, visualization, and quantification of the global murine cerebrovasculature is necessary for establishing the baseline changes that occur with aging. To provide in vivo whole-brain imaging of the cerebrovasculature in aging C57BL/6 mice longitudinally, contrast-enhanced magnetic resonance angiography (CE-MRA) was employed using a house-made gadolinium-bearing micellar blood pool agent. Enhancement in the vascular space permitted quantification of the detectable, or apparent, cerebral blood volume (aCBV), which was analyzed over 2 years of aging and compared to histological analysis of the cerebrovascular density. A significant loss in the aCBV was detected by CE-MRA over the aging period. Histological analysis via vessel-probing immunohistochemistry confirmed a significant loss in the cerebrovascular density over the same 2-year aging period, validating the CE-MRA findings. While these techniques use widely different methods of assessment and spatial resolutions, their comparable findings in detected vascular loss corroborate the growing body of literature describing vascular rarefaction aging. These findings suggest that such age-dependent changes can contribute to cerebrovascular and neurodegenerative diseases, which are modeled using wild-type and transgenic laboratory rodents.

8.
J Immunother Cancer ; 6(1): 97, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285856

RESUMO

BACKGROUND: Malignant angiomyolipoma is an uncommon tumor of the class of perivasciular epithelioid cell neoplasms (PEComas). These tumors are characteristically driven by deleterious mutations in the tumor suppressors TSC1 and TSC2, whose gene products typically act to inhibit mTOR. There are several cases of malignant angiomyolipoma which exhibit transient responses to mTOR inhibitors, forming the basis of current practice guidelines in malignant PEComa. However the tumors ultimately acquire resistance, and there is no well-established second-line option. Despite the increasing prevalence of immunotherapy across a wide range of solid tumors, little is known about the immune infiltrate and PD-L1 expression of angiomyolipoma. Furthermore, there is no reported case on the treatment of malignant angiomyolipoma with an immune checkpoint inhibitor. CASE PRESENTATION: A 38 year-old man presented with gross hematuria and was diagnosed with renal epithelioid angiomyolipoma. Despite surgical resection, the tumor recurred and metastasized. Targeted genomic sequencing revealed a deleterious mutation in TSC2, and the patient was treated with the mTOR inihbitor everolimus. The patient went on to have a partial response but ultimately progressed. He was then treated with the anti-PD-1 immune checkpoint inhibitor nivolumab, and achieved a durable near-complete response which is ongoing after two years of treatment. Immunohistochemical staining of tumor tissue revealed strong PD-L1 expression and a brisk T-cell infiltrate. CONCLUSIONS: We report on the first durable systemic treatment of malignant epithelioid angiomyolipoima with the use of PD-1 antibody nivolumab. Given the absence of prospective clinical trials in this exceedingly rare disease, particularly in the second-line setting, immune checkpoint inhibitors like nivolumab should be considered.


Assuntos
Angiomiolipoma/tratamento farmacológico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Angiomiolipoma/diagnóstico por imagem , Angiomiolipoma/patologia , Humanos , Imunoterapia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Masculino , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA