Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 84(3): 316-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26650892

RESUMO

Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, crystal structures of apo-BaiE and its putative product-bound [3-oxo-Δ(4,6) -lithocholyl-Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + ß barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady-state kinetic studies reveal that the BaiE homologs are able to turn over 3-oxo-Δ(4) -bile acid and CoA-conjugated 3-oxo-Δ(4) -bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway.


Assuntos
Proteínas de Bactérias/química , Ácidos Cólicos/química , Clostridium/enzimologia , Hidroliases/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Ácidos Cólicos/biossíntese , Cristalografia por Raios X , Humanos , Hidroliases/genética , Ligação de Hidrogênio , Hidroxilação , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
2.
Bioconjug Chem ; 26(12): 2554-62, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26588668

RESUMO

Post-translational modification catalyzed by phosphopantetheinyl transferases (PPTases) has previously been used to site-specifically label proteins with structurally diverse molecules. PPTase catalysis results in covalent modification of a serine residue in acyl/peptidyl carrier proteins and their surrogate substrates which are typically fused to the N- or C-terminus. To test the utility of PPTases for preparing antibody-drug conjugates (ADCs), we inserted 11 and 12-mer PPTase substrate sequences at 110 constant region loop positions of trastuzumab. Using Sfp-PPTase, 63 sites could be efficiently labeled with an auristatin toxin, resulting in 95 homogeneous ADCs. ADCs labeled in the CH1 domain displayed in general excellent pharmacokinetic profiles and negligible drug loss. A subset of CH2 domain conjugates underwent rapid clearance in mouse pharmacokinetic studies. Rapid clearance correlated with lower thermal stability of the particular antibodies. Independent of conjugation site, almost all ADCs exhibited subnanomolar in vitro cytotoxicity against HER2-positive cell lines. One selected ADC was shown to induce tumor regression in a xenograft model at a single dose of 3 mg/kg, demonstrating that PPTase-mediated conjugation is suitable for the production of highly efficacious and homogeneous ADCs.


Assuntos
Aminobenzoatos/metabolismo , Antineoplásicos/metabolismo , Proteínas de Bactérias/metabolismo , Imunoconjugados/metabolismo , Neoplasias/tratamento farmacológico , Oligopeptídeos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Trastuzumab/metabolismo , Aminobenzoatos/química , Aminobenzoatos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato , Trastuzumab/química , Trastuzumab/uso terapêutico
3.
Proteins ; 82(2): 216-29, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23836456

RESUMO

Despite significant influence of secondary bile acids on human health and disease, limited structural and biochemical information is available for the key gut microbial enzymes catalyzing its synthesis. Herein, we report apo- and cofactor bound crystal structures of BaiA2, a short chain dehydrogenase/reductase from Clostridium scindens VPI 12708 that represent the first protein structure of this pathway. The structures elucidated the basis of cofactor specificity and mechanism of proton relay. A conformational restriction involving Glu42 located in the cofactor binding site seems crucial in determining cofactor specificity. Limited flexibility of Glu42 results in imminent steric and electrostatic hindrance with 2'-phosphate group of NADP(H). Consistent with crystal structures, steady state kinetic characterization performed with both BaiA2 and BaiA1, a close homolog with 92% sequence identity, revealed specificity constant (kcat /KM ) of NADP(+) at least an order of magnitude lower than NAD(+) . Substitution of Glu42 with Ala improved specificity toward NADP(+) by 10-fold compared to wild type. The cofactor bound structure uncovered a novel nicotinamide-hydroxyl ion (NAD(+) -OH(-) ) adduct contraposing previously reported adducts. The OH(-) of the adduct in BaiA2 is distal to C4 atom of nicotinamide and proximal to 2'-hydroxyl group of the ribose moiety. Moreover, it is located at intermediary distances between terminal functional groups of active site residues Tyr157 (2.7 Å) and Lys161 (4.5 Å). Based on these observations, we propose an involvement of NAD(+) -OH(-) adduct in proton relay instead of hydride transfer as noted for previous adducts.


Assuntos
Proteínas de Bactérias/química , Ácidos e Sais Biliares/biossíntese , Clostridium/enzimologia , Hidroxiesteroide Desidrogenases/química , Apoenzimas/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , NAD/química
4.
Chembiochem ; 15(12): 1787-91, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25044133

RESUMO

To expand the utility of proteinaceous FRET biosensors, we have developed a dual-labeling approach based on two small bio-orthogonal tags: pyrroline-carboxy-lysine (Pcl) and the S6 peptide. The lack of cross-reactivity between those tags enables site-specific two-color protein conjugation in a one-pot reaction. Moreover, Pcl/S6 dual-tagged proteins can be produced in both bacterial and mammalian expression systems, as demonstrated for Z domain and IgE-Fc, respectively. Both proteins could be efficiently dual-labeled with FRET-compatible fluorescent dyes at neutral pH. In the case of IgE-Fc, the resulting conjugate enabled the monitoring of IgE binding to its high-affinity receptor FcεRI, which is a key event in allergic disease.


Assuntos
Corantes Fluorescentes/química , Lisina/análogos & derivados , Peptídeos/química , Proteínas/química , Coloração e Rotulagem/métodos , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Concentração de Íons de Hidrogênio , Lisina/química , Estrutura Molecular
5.
Proc Natl Acad Sci U S A ; 108(26): 10437-42, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670250

RESUMO

Pyrroline-carboxy-lysine (Pcl) is a demethylated form of pyrrolysine that is generated by the pyrrolysine biosynthetic enzymes when the growth media is supplemented with D-ornithine. Pcl is readily incorporated by the unmodified pyrrolysyl-tRNA/tRNA synthetase pair into proteins expressed in Escherichia coli and in mammalian cells. Here, we describe a broadly applicable conjugation chemistry that is specific for Pcl and orthogonal to all other reactive groups on proteins. The reaction of Pcl with 2-amino-benzaldehyde or 2-amino-acetophenone reagents proceeds to near completion at neutral pH with high efficiency. We illustrate the versatility of the chemistry by conjugating Pcl proteins with poly(ethylene glycol)s, peptides, oligosaccharides, oligonucleotides, fluorescence, and biotin labels and other small molecules. Because Pcl is genetically encoded by TAG codons, this conjugation chemistry enables enhancements of the pharmacology and functionality of proteins through site-specific conjugation.


Assuntos
Lisina/química , Proteínas/química , Pirróis/química , Meios de Cultura , Escherichia coli/genética , Ressonância Magnética Nuclear Biomolecular
6.
Nat Chem Biol ; 7(8): 528-30, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21525873

RESUMO

D-ornithine has previously been suggested to enhance the expression of pyrrolysine-containing proteins. We unexpectedly discovered that uptake of D-ornithine results in the insertion of a new amino acid, pyrroline-carboxy-lysine (Pcl) instead of the anticipated pyrrolysine (Pyl). Our feeding and biochemical studies point to specific roles of the poorly understood Pyl biosynthetic enzymes PylC and PylD in converting L-lysine and D-ornithine to Pcl and confirm intermediates in the biosynthesis of Pyl.


Assuntos
Lisina/análogos & derivados , Ornitina/farmacologia , Sequência de Aminoácidos , Escherichia coli , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Lisina/biossíntese , Lisina/química , Methanosarcina/genética , Methanosarcina/metabolismo , Estrutura Molecular , Ornitina/química , Ornitina/metabolismo , Plasmídeos , Regiões Promotoras Genéticas
7.
Chembiochem ; 13(3): 364-6, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22223621

RESUMO

Sticky residue: Pyrroline-carboxy-lysine (Pcl) can be readily incorporated into proteins expressed in E. coli and mammalian cells by using the pyrrolysyl tRNA/tRNA synthetase pair. Pcl can be used as a single amino acid purification tag and can be site-specifically modified with functional probes during the elution process.


Assuntos
Lisina/análogos & derivados , Proteínas/química , Proteínas/isolamento & purificação , Benzaldeídos/química , Sítios de Ligação , Lisina/química , Lisina/metabolismo , Estrutura Molecular
8.
Biochemistry ; 49(43): 9372-84, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20925317

RESUMO

Helix-coil equilibrium studies are important for understanding helix formation in protein folding, and for helical foldamer design. The quantitative description of a helix using statistical mechanical models is based on experimentally derived helix propensities and the assumption that helix propensity is position-independent. To investigate this assumption, we studied a series of 19-residue Ala-based peptides, to measure the helix propensity for Leu, Phe, and Pff at positions 6, 11, and 16. Circular dichroism spectroscopy revealed that substituting Ala with a given amino acid (Leu, Phe, or Pff) resulted in the following fraction helix trend: KXaa16 > KXaa6 > KXaa11. Helix propensities for Leu, Phe, and Pff at the different positions were derived from the CD data. For the same amino acid, helix propensities were similar at positions 6 and 11, but much higher at position 16 (close to the C-terminus). A survey of protein helices revealed that Leu/Phe-Lys (i, i + 3) sequence patterns frequently occur in two structural patterns involving the helix C-terminus; however, these cases include a left-handed conformation residue. Furthermore, no Leu/Phe-Lys interaction was found except for the Lys-Phe cation-π interaction in two cases of Phe-Ala-Ala-Lys. The apparent high helix propensity at position 16 may be due to helix capping, adoption of a 310-helix near the C-terminus perhaps with Xaa-Lys (i, i + 3) interactions, or proximity to the peptide chain terminus. Accordingly, helix propensity is generally position-independent except in the presence of alternative structures or in the proximity of either chain terminus. These results should facilitate the design of helical peptides, proteins, and foldamers.


Assuntos
Alanina , Peptídeos/química , Substituição de Aminoácidos , Aminoácidos , Dicroísmo Circular , Desenho de Fármacos , Estrutura Secundária de Proteína
9.
J Am Chem Soc ; 131(37): 13192-3, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19711980

RESUMO

Highly fluorinated amino acids have been used to stabilize helical proteins for potential application in various protein-based biotechnologies. However, many proteins used for therapeutics and biosensors involve beta-sheet proteins such as antibodies. Accordingly, we explored the effect of several highly fluorinated amino acids on beta-sheet stability including (S)-2-amino-4,4,4-trifluorobutyric acid (Atb), (S)-5,5,5',5'-tetrafluoroleucine (Qfl), (S)-5,5,5,5',5',5'-hexafluoroleucine (Hfl), and (S)-pentafluorophenylalanine (Pff). Nine proteins based on the protein G B1 domain I6A T44A mutant (GB1) with various amino acids at the solvent exposed guest position 53 in the internal strand 4 were synthesized, purified, and investigated by thermal denaturation monitored by circular dichroism spectroscopy. Based on the thermal denaturation data, GB1 stability is affected by the amino acid at the guest position 53. Apparently, introducing fluorine results in more stable GB1 mutants (Pff > Phe, Hfl > Qfl > Leu, Atb > Abu). In particular, GB1 becomes more stable upon introducing fluorines by up to 0.35 kcal x mol(-1) x residue(-1). Overall, these results suggest that fluoro-amino acids may be worthwhile building blocks to explore for stabilizing beta-sheet proteins, which are especially important for biotechnologies such as protein therapeutics and biosensors.


Assuntos
Aminoácidos/química , Halogenação , Proteínas do Tecido Nervoso/química , Solventes , Modelos Moleculares , Desnaturação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura de Transição
10.
Org Lett ; 9(26): 5517-20, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18044910

RESUMO

We have developed a short chemoenzymatic synthesis for both (S)-5,5,5,5',5',5'-hexafluoroleucine (Hfl) and (S)-5,5,5',5'-tetrafluoroleucine (Qfl) on gram scale. Qfl was incorporated into a peptide using standard solid-phase peptide synthesis protocols to measure its helix propensity. The helix propensity for Qfl is 0.68 kcal.mol-1 more favorable compared to Hfl.


Assuntos
Flúor/química , Leucina/síntese química , Cromatografia Líquida de Alta Pressão , Leucina/química
11.
J Am Chem Soc ; 128(49): 15556-7, 2006 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17147342

RESUMO

Highly fluorinated amino acids have been used to stabilize helical proteins for potential application in various protein-based biotechnologies. To gain further insight into the effect of these highly fluorinated amino acids on helix formation exclusively, we measured the helix propensity of three highly fluorinated amino acids: (S)-5,5,5,5',5',5'-hexafluoroleucine (Hfl), (S)-2-amino-4,4,4-trifluorobutyric acid (Atb), and (S)-pentafluorophenylalanine (Pff). We have developed a short chemoenzymatic synthesis of Hfl with extremely high enantioselectivity (>99%). To measure the helix propensity (w) of the amino acids, alanine-based peptides were synthesized, purified, and investigated by circular dichroism spectroscopy (CD). On the basis of the CD data, the helix propensity of hydrocarbon amino acids can decrease up to 24-fold (1.72 kcal.mol-1.residue-1) upon fluorination. This difference in helix propensity has previously been overlooked in estimating the magnitude of the fluoro-stabilization effect (which has been estimated to be 0.32-0.83 kcal.mol-1.residue-1 for Hfl), resulting in a gross underestimation. Therefore, the full potential of the fluoro-stabilization effect should provide even more stable proteins than the fluoro-stabilized proteins to date.


Assuntos
Aminoácidos/química , Flúor/química , Peptídeos/química , Estrutura Secundária de Proteína , Dicroísmo Circular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA