Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(1): e1011754, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198519

RESUMO

Cancer models are instrumental as a substitute for human studies and to expedite basic, translational, and clinical cancer research. For a given cancer type, a wide selection of models, such as cell lines, patient-derived xenografts, organoids and genetically modified murine models, are often available to researchers. However, how to quantify their congruence to human tumors and to select the most appropriate cancer model is a largely unsolved issue. Here, we present Congruence Analysis and Selection of CAncer Models (CASCAM), a statistical and machine learning framework for authenticating and selecting the most representative cancer models in a pathway-specific manner using transcriptomic data. CASCAM provides harmonization between human tumor and cancer model omics data, systematic congruence quantification, and pathway-based topological visualization to determine the most appropriate cancer model selection. The systems approach is presented using invasive lobular breast carcinoma (ILC) subtype and suggesting CAMA1 followed by UACC3133 as the most representative cell lines for ILC research. Two additional case studies for triple negative breast cancer (TNBC) and patient-derived xenograft/organoid (PDX/PDO) are further investigated. CASCAM is generalizable to any cancer subtype and will authenticate cancer models for faithful non-human preclinical research towards precision medicine.


Assuntos
Medicina de Precisão , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Perfilação da Expressão Gênica , Análise de Sistemas
2.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730604

RESUMO

Despite significant advances in tumor biology and clinical therapeutics, metastasis remains the primary cause of cancer-related deaths. While RNA-seq technology has been used extensively to study metastatic cancer characteristics, challenges persist in acquiring adequate transcriptomic data. To overcome this challenge, we propose MetGen, a generative contrastive learning tool based on a deep learning model. MetGen generates synthetic metastatic cancer expression profiles using primary cancer and normal tissue expression data. Our results demonstrate that MetGen generates comparable samples to actual metastatic cancer samples, and the cancer and tissue classification yields performance rates of 99.8 ± 0.2% and 95.0 ± 2.3%, respectively. A benchmark analysis suggests that the proposed model outperforms traditional generative models such as the variational autoencoder. In metastatic subtype classification, our generated samples show 97.6% predicting power compared to true metastatic samples. Additionally, we demonstrate MetGen's interpretability using metastatic prostate cancer and metastatic breast cancer. MetGen has learned highly relevant signatures in cancer, tissue, and tumor microenvironments, such as immune responses and the metastasis process, which can potentially foster a more comprehensive understanding of metastatic cancer biology. The development of MetGen represents a significant step toward the study of metastatic cancer biology by providing a generative model that identifies candidate therapeutic targets for the treatment of metastatic cancer.

3.
Patterns (N Y) ; 5(4): 100949, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645769

RESUMO

Large-scale cancer drug sensitivity data have become available for a collection of cancer cell lines, but only limited drug response data from patients are available. Bridging the gap in pharmacogenomics knowledge between in vitro and in vivo datasets remains challenging. In this study, we trained a deep learning model, Scaden-CA, for deconvoluting tumor data into proportions of cancer-type-specific cell lines. Then, we developed a drug response prediction method using the deconvoluted proportions and the drug sensitivity data from cell lines. The Scaden-CA model showed excellent performance in terms of concordance correlation coefficients (>0.9 for model testing) and the correctly deconvoluted rate (>70% across most cancers) for model validation using Cancer Cell Line Encyclopedia (CCLE) bulk RNA data. We applied the model to tumors in The Cancer Genome Atlas (TCGA) dataset and examined associations between predicted cell viability and mutation status or gene expression levels to understand underlying mechanisms of potential value for drug repurposing.

4.
Patterns (N Y) ; 5(2): 100894, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370127

RESUMO

Advancing precision oncology requires accurate prediction of treatment response and accessible prediction models. To this end, we present shinyDeepDR, a user-friendly implementation of our innovative deep learning model, DeepDR, for predicting anti-cancer drug sensitivity. The web tool makes DeepDR more accessible to researchers without extensive programming experience. Using shinyDeepDR, users can upload mutation and/or gene expression data from a cancer sample (cell line or tumor) and perform two main functions: "Find Drug," which predicts the sample's response to 265 approved and investigational anti-cancer compounds, and "Find Sample," which searches for cell lines in the Cancer Cell Line Encyclopedia (CCLE) and tumors in The Cancer Genome Atlas (TCGA) with genomics profiles similar to those of the query sample to study potential effective treatments. shinyDeepDR provides an interactive interface to interpret prediction results and to investigate individual compounds. In conclusion, shinyDeepDR is an intuitive and free-to-use web tool for in silico anti-cancer drug screening.

5.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313267

RESUMO

Motivation: Molecular Regulatory Pathways (MRPs) are crucial for understanding biological functions. Knowledge Graphs (KGs) have become vital in organizing and analyzing MRPs, providing structured representations of complex biological interactions. Current tools for mining KGs from biomedical literature are inadequate in capturing complex, hierarchical relationships and contextual information about MRPs. Large Language Models (LLMs) like GPT-4 offer a promising solution, with advanced capabilities to decipher the intricate nuances of language. However, their potential for end-to-end KG construction, particularly for MRPs, remains largely unexplored. Results: We present reguloGPT, a novel GPT-4 based in-context learning prompt, designed for the end-to-end joint name entity recognition, N-ary relationship extraction, and context predictions from a sentence that describes regulatory interactions with MRPs. Our reguloGPT approach introduces a context-aware relational graph that effectively embodies the hierarchical structure of MRPs and resolves semantic inconsistencies by embedding context directly within relational edges. We created a benchmark dataset including 400 annotated PubMed titles on N6-methyladenosine (m6A) regulations. Rigorous evaluation of reguloGPT on the benchmark dataset demonstrated marked improvement over existing algorithms. We further developed a novel G-Eval scheme, leveraging GPT-4 for annotation-free performance evaluation and demonstrated its agreement with traditional annotation-based evaluations. Utilizing reguloGPT predictions on m6A-related titles, we constructed the m6A-KG and demonstrated its utility in elucidating m6A's regulatory mechanisms in cancer phenotypes across various cancers. These results underscore reguloGPT's transformative potential for extracting biological knowledge from the literature. Availability and implementation: The source code of reguloGPT, the m6A title and benchmark datasets, and m6A-KG are available at: https://github.com/Huang-AI4Medicine-Lab/reguloGPT.

6.
Sci Rep ; 14(1): 12753, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830975

RESUMO

Six Transmembrane Epithelial Antigen of Prostate 2 (STEAP2) belongs to a family of metalloreductases, which indirectly aid in uptake of iron and copper ions. Its role in hepatocellular carcinoma (HCC) remains to be characterized. Here, we report that STEAP2 expression was upregulated in HCC tumors compared with paired adjacent non-tumor tissues by RNA sequencing, RT-qPCR, Western blotting, and immunostaining. Public HCC datasets demonstrated upregulated STEAP2 expression in HCC and positive association with tumor grade. Transient and stable knockdown (KD) of STEAP2 in HCC cell lines abrogated their malignant phenotypes in vitro and in vivo, while STEAP2 overexpression showed opposite effects. STEAP2 KD in HCC cells led to significant alteration of genes associated with extracellular matrix organization, cell adhesion/chemotaxis, negative enrichment of an invasiveness signature gene set, and inhibition of cell migration/invasion. STEAP2 KD reduced intracellular copper levels and activation of stress-activated MAP kinases including p38 and JNK. Treatment with copper rescued the reduced HCC cell migration due to STEAP2 KD and activated p38 and JNK. Furthermore, treatment with p38 or JNK inhibitors significantly inhibited copper-mediated cell migration. Thus, STEAP2 plays a malignant-promoting role in HCC cells by driving migration/invasion via increased copper levels and MAP kinase activities. Our study uncovered a novel molecular mechanism contributing to HCC malignancy and a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Movimento Celular , Cobre , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Cobre/metabolismo , Linhagem Celular Tumoral , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos , Progressão da Doença , Masculino , Oxirredutases/metabolismo , Oxirredutases/genética , Feminino
7.
Nat Commun ; 15(1): 1533, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378868

RESUMO

CAMILLA is a basket trial (NCT03539822) evaluating cabozantinib plus the ICI durvalumab in chemorefractory gastrointestinal cancer. Herein, are the phase II colorectal cohort results. 29 patients were evaluable. 100% had confirmed pMMR/MSS tumors. Primary endpoint was met with ORR of 27.6% (95% CI 12.7-47.2%). Secondary endpoints of 4-month PFS rate was 44.83% (95% CI 26.5-64.3%); and median OS was 9.1 months (95% CI 5.8-20.2). Grade≥3 TRAE occurred in 39%. In post-hoc analysis of patients with RAS wild type tumors, ORR was 50% and median PFS and OS were 6.3 and 21.5 months respectively. Exploratory spatial transcriptomic profiling of pretreatment tumors showed upregulation of VEGF and MET signaling, increased extracellular matrix activity and preexisting anti-tumor immune responses coexisting with immune suppressive features like T cell migration barriers in responders versus non-responders. Cabozantinib plus durvalumab demonstrated anti-tumor activity, manageable toxicity, and have led to the activation of the phase III STELLAR-303 trial.


Assuntos
Anilidas , Anticorpos Monoclonais , Neoplasias Colorretais , Piridinas , Humanos , Anticorpos Monoclonais/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Biomarcadores , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
8.
medRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746245

RESUMO

Background: The incidence and mortality rates of hepatocellular carcinoma (HCC) among Hispanics in the United States are much higher than those of non-Hispanic whites. We conducted comprehensive multi-omics analyses to understand molecular alterations in HCC among Hispanic patients. Methods: Paired tumor and adjacent non-tumor samples were collected from 31 Hispanic HCC in South Texas (STX-Hispanic) for genomic, transcriptomic, proteomic, and metabolomic profiling. Additionally, serum lipids were profiled in 40 Hispanic and non-Hispanic patients with or without clinically diagnosed HCC. Results: Exome sequencing revealed high mutation frequencies of AXIN2 and CTNNB1 in STX Hispanic HCCs, suggesting a predominant activation of the Wnt/ß-catenin pathway. The TERT promoter mutation frequency was also remarkably high in the Hispanic cohort. Cell cycles and liver functions were identified as positively- and negatively-enriched, respectively, with gene set enrichment analysis. Gene sets representing specific liver metabolic pathways were associated with dysregulation of corresponding metabolites. Negative enrichment of liver adipogenesis and lipid metabolism corroborated with a significant reduction in most lipids in the serum samples of HCC patients. Two HCC subtypes from our Hispanic cohort were identified and validated with the TCGA liver cancer cohort. The subtype with better overall survival showed higher activity of immune and angiogenesis signatures, and lower activity of liver function-related gene signatures. It also had higher levels of immune checkpoint and immune exhaustion markers. Conclusions: Our study revealed some specific molecular features of Hispanic HCC and potential biomarkers for therapeutic management of HCC and provides a unique resource for studying Hispanic HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA