Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Anal Chem ; 96(19): 7386-7393, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38698660

RESUMO

Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.


Assuntos
Mapeamento de Epitopos , Receptor ErbB-2 , Trastuzumab , Humanos , Mapeamento de Epitopos/métodos , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Trastuzumab/química , Alquilação , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Halogenação , Pegadas de Proteínas/métodos , Complexo Antígeno-Anticorpo/química
2.
J Am Chem Soc ; 143(49): 20670-20679, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846870

RESUMO

Covalent labeling of proteins in combination with mass spectrometry has been established as a complementary technique to classical structural methods, such as X-ray, NMR, or cryogenic electron microscopy (Cryo-EM), used for protein structure determination. Although the current covalent labeling techniques enable the protein solvent accessible areas with sufficient spatial resolution to be monitored, there is still high demand for alternative, less complicated, and inexpensive approaches. Here, we introduce a new covalent labeling method based on fast fluoroalkylation of proteins (FFAP). FFAP uses fluoroalkyl radicals formed by reductive decomposition of Togni reagents with ascorbic acid to label proteins on a time scale of seconds. The feasibility of FFAP to effectively label proteins was demonstrated by monitoring the differential amino acids modification of native horse heart apomyoglobin/holomyoglobin and the human haptoglobin-hemoglobin complex. The obtained data confirmed the Togni reagent-mediated FFAP is an advantageous alternative method for covalent labeling in applications such as protein footprinting and epitope mapping of proteins (and their complexes) in general. Data are accessible via the ProteomeXchange server with the data set identifier PXD027310.


Assuntos
Proteínas de Escherichia coli/química , Haptoglobinas/química , Hemoglobinas/química , Hidrocarbonetos Fluorados/química , Mioglobina/química , Proteínas Repressoras/química , Alquilação , Animais , Escherichia coli/química , Cavalos , Humanos , Espectrometria de Massas/métodos , Conformação Proteica
3.
Mol Cell Proteomics ; 18(2): 320-337, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30459217

RESUMO

Eukaryotic protein homeostasis (proteostasis) is largely dependent on the action of highly conserved Hsp70 molecular chaperones. Recent evidence indicates that, apart from conserved molecular allostery, Hsp70 proteins have retained and adapted the ability to assemble as functionally relevant ATP-bound dimers throughout evolution. Here, we have compared the ATP-dependent dimerization of DnaK, human stress-inducible Hsp70, Hsc70 and BiP Hsp70 proteins, showing that their dimerization propensities differ, with stress-inducible Hsp70 being predominantly dimeric in the presence of ATP. Structural analyses using hydrogen/deuterium exchange mass spectrometry, native electrospray ionization mass spectrometry and small-angle X-ray scattering revealed that stress-inducible Hsp70 assembles in solution as an antiparallel dimer with the intermolecular interface closely resembling the ATP-bound dimer interfaces captured in DnaK and BiP crystal structures. ATP-dependent dimerization of stress-inducible Hsp70 is necessary for its efficient interaction with Hsp40, as shown by experiments with dimerization-deficient mutants. Moreover, dimerization of ATP-bound Hsp70 is required for its participation in high molecular weight protein complexes detected ex vivo, supporting its functional role in vivo As human cytosolic Hsp70 can interact with tetratricopeptide repeat (TPR) domain containing cochaperones, we tested the interaction of Hsp70 ATP-dependent dimers with Chip and Tomm34 cochaperones. Although Chip associates with intact Hsp70 dimers to form a larger complex, binding of Tomm34 disrupts the Hsp70 dimer and this event plays an important role in Hsp70 activity regulation. In summary, this study provides structural evidence of robust ATP-dependent antiparallel dimerization of human inducible Hsp70 protein and suggests a novel role of TPR domain cochaperones in multichaperone complexes involving Hsp70 ATP-bound dimers.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Estresse Fisiológico
4.
Anal Chem ; 90(2): 1104-1113, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29232109

RESUMO

Chemical cross-linking coupled with mass spectrometry is a popular technique for deriving structural information on proteins and protein complexes. Also, cross-linking has become a powerful tool for stabilizing macromolecular complexes for single-particle cryo-electron microscopy. However, an effect of cross-linking on protein structure and function should not be forgotten, and surprisingly, it has not been investigated in detail so far. Here, we used kinetic studies, mass spectrometry, and NMR spectroscopy to systematically investigate an impact of cross-linking on structure and function of human carbonic anhydrase and alcohol dehydrogenase 1 from Saccharomyces cerevisiae. We found that cross-linking induces rather local structural disturbances and the overall fold is preserved even at a higher cross-linker concentration. The results establish general experimental conditions for chemical cross-linking with minimal effect on protein structure and function.


Assuntos
Álcool Desidrogenase/química , Anidrases Carbônicas/química , Reagentes de Ligações Cruzadas/química , Humanos , Espectrometria de Massas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica
5.
Proteins ; 84(9): 1304-11, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27238500

RESUMO

Mouse Nkrp1a receptor is a C-type lectin-like receptor expressed on the surface of natural killer cells that play an important role against virally infected and tumor cells. The recently solved crystal structure of Nkrp1a raises questions about a long loop region which was uniquely extended from the central region in the crystal. To understand the functional significance of the loop, the solution structure of Nkrp1a using nuclear magnetic resonance (NMR) spectroscopy was determined. A notable difference between the crystal and NMR structure of Nkrp1a appears in the conformation of the long loop region. While the extended loop points away from the central core and mediates formation of a domain swapped dimer in the crystal, the solution structure is monomeric with the loop tightly anchored to the central region. The findings described the first solution structure in the Nkrp1 family and revealed intriguing similarities and differences to the crystal structure. Proteins 2016; 84:1304-1311. © 2016 Wiley Periodicals, Inc.


Assuntos
Subfamília B de Receptores Semelhantes a Lectina de Células NK/química , Motivos de Aminoácidos , Animais , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Espectroscopia de Ressonância Magnética , Camundongos , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Soft Matter ; 12(2): 531-41, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26489523

RESUMO

Protein folding is governed by a balance of non-covalent interactions, of which cation-π and π-π play important roles. Theoretical calculations revealed a strong cooperativity between cation-π involving alkali and alkaline earth metal ions and π-π interactions, but however, no experimental evidence was provided in this regard. Here, we characterized a Ca(2+)-binding self-processing module (SPM), which mediates a highly-specific Ca(2+)-dependent autocatalytic processing of iron-regulated protein FrpC secreted by the pathogenic Gram-negative bacterium Neisseria meningitidis. The SPM undergoes a Ca(2+)-induced transition from an intrinsically unstructured conformation to the compact protein fold that is ultimately stabilized by the π-π interaction between two unique tryptophan residues arranged in the T-shaped orientation. Moreover, the pair of tryptophans is located in a close vicinity of a calcium-binding site, suggesting the involvement of a Ca(2+)-assisted π-π interaction in the stabilization of the tertiary structure of the SPM. This makes the SPM an excellent model for the investigation of the Ca(2+)-assisted π-π interaction during Ca(2+)-induced protein folding.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Sítios de Ligação , Conformação Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos
7.
Plants (Basel) ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732454

RESUMO

The best-characterized functional motifs of the potyviral Helper-Component protease (HC-Pro) responding for aphid transmission, RNA silencing suppression, movement, symptom development, and replication are gathered in this review. The potential cellular protein targets of plant virus proteases remain largely unknown despite their multifunctionality. The HC-Pro catalytic domain, as a cysteine protease, autoproteolytically cleaves the potyviral polyproteins in the sequence motif YXVG/G and is not expected to act on host targets; however, 146 plant proteins in the Viridiplantae clade containing this motif were searched in the UniProtKB database and are discussed. On the other hand, more than 20 interactions within the entire HC-Pro structure are known. Most of these interactions with host targets (such as the 20S proteasome, methyltransferase, transcription factor eIF4E, and microtubule-associated protein HIP2) modulate the cellular environments for the benefit of virus accumulation or contribute to symptom severity (interactions with MinD, Rubisco, ferredoxin) or participate in the suppression of RNA silencing (host protein VARICOSE, calmodulin-like protein). On the contrary, the interaction of HC-Pro with triacylglycerol lipase, calreticulin, and violaxanthin deepoxidase seems to be beneficial for the host plant. The strength of these interactions between HC-Pro and the corresponding host protein vary with the plant species. Therefore, these interactions may explain the species-specific sensitivity to potyviruses.

8.
Methods Mol Biol ; 2718: 303-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665467

RESUMO

Hydrogen/deuterium exchange (HDX) followed by mass spectrometry detection (MS) provides a fast, reliable, and detailed solution for the assessment of a protein structure. It has been widely recognized as an indispensable tool and already approved by several regulatory agencies as a structural technique for the validation of protein biopharmaceuticals, including antibody-based drugs. Antibodies are of a key importance in life and medical sciences but considered to be challenging analytical targets because of their compact structure stabilized by disulfide bonds and due to the presence of glycosylation. Despite these difficulties, there are already numerous excellent studies describing MS-based antibody structure characterization. In this chapter, we describe a universal HDX-MS workflow. Deeper attention is paid to sample handling, optimization procedures, and feasibility stages, as these elements of the HDX experiment are crucial for obtaining reliable detailed and spatially well-resolved information.


Assuntos
Anticorpos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Deutério , Espectrometria de Massas , Hidrogênio
9.
Chem Biol Interact ; 382: 110625, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422065

RESUMO

Triazoles inhibit lanosterol 14α-demethylase and block ergosterol biosynthesis in fungal pathogens. However, they also interact with other cytochrome P450 enzymes and influence non-target metabolic pathways. Disturbingly, triazoles may interact with essential elements. The interaction of penconazole (Pen), cyproconazole (Cyp) and tebuconazole (Teb) with Zn2+ results in the formation of deprotonated ligands in their complexes or in the creation of complexes with Cl- as a counterion or doubly charged complexes. Triazoles, as well as their equimolar cocktails with Zn2+ (10-6 mol/L), decreased the activities of the non-target enzymes CYP19A1 and CYP3A4. Pen most decreased CYP19A1 activity and was best bound to its active centre to block the catalytic cycle in computational analysis. For CYP3A4, Teb was found to be the most effective inhibitor by both, activity assay and interaction with the active centre. Teb/Cyp/Zn2+ and Teb/Pen/Cyp/Zn2+ cocktails also decreased the CYP19A1 activity, which was in correlation with the formation of numerous triazole-Zn2+ complexes.


Assuntos
Citocromo P-450 CYP3A , Zinco , Citocromo P-450 CYP3A/metabolismo , Triazóis/farmacologia , Triazóis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Biotransformação
10.
J Struct Biol ; 179(1): 10-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22580067

RESUMO

Hydrogen/deuterium (H/D) exchange or chemical cross-linking by soluble carbodiimide (EDC) was employed in combination with high-resolution mass spectrometry (MS) to extend our knowledge about contact surface regions involved in the well-characterized model of interaction between two molecules of human 14-3-3ζ regulatory protein. The H/D exchange experiment provided low resolution mapping of interaction in the homodimeric 14-3-3ζ complex. A lower level of deuteration, suggesting structural protection, of two sequential segments has been demonstrated for dimeric 14-3-3ζ wild type relative to the monomeric mutant 14-3-3ζ S58D. The N-terminal sequence (the first 27 residues) from one subunit interacts with region αC'and αD'-helices (residues 45-98) of the other molecule across the dimer interface. To identify interacting amino acid residues within the studied complex, a chemical cross-linking reaction was carried out to produce the covalent homodimer, which was detected by SDS-PAGE. The MS analysis (following tryptic in-gel digestion) employing both high resolution and tandem mass spectrometry revealed cross-linked amino acid residues. Two alternative salt bridges between Glu81 and either Lys9 or the N-terminal amino group have been found to participate in transient interactions of the 14-3-3ζ isotype homodimerization. The data obtained, which have never previously been reported, were used to modify the published 14-3-3 crystal structure using molecular modeling. Based on our findings, utilization of this combination of experimental approaches, which preserve protein native structures, is suitable for mapping the contact between two proteins and also allows for the description of transient interactions or of regions with flexible structure in the studied protein complexes.


Assuntos
Proteínas 14-3-3/química , Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Proteínas 14-3-3/genética , Proteínas 14-3-3/isolamento & purificação , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Carbodi-Imidas/química , Reagentes de Ligações Cruzadas/química , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Conformação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
11.
Anal Chem ; 84(2): 867-70, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22196380

RESUMO

A combination of chemical cross-linking and hydrogen-deuterium exchange coupled to high resolution mass spectrometry was used to describe structural differences of NKR-P1A receptor. The loop region extended from the compact core in the crystal structure was found to be closely attached to the protein core in solution. Our approach has potential to refine protein structures in solution within a few days and has very low sample consumption.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Medição da Troca de Deutério , Subfamília B de Receptores Semelhantes a Lectina de Células NK/química , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Cristalografia por Raios X , Humanos , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
12.
Protein Expr Purif ; 86(2): 142-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23059620

RESUMO

Using a codon-optimized gene fragment, we report remarkable yields for extracellular domain of human NK cell receptor (NKp30ex) when produced on M9 minimal medium, even with low (2g/L) glucose concentration. The yields were identical using media containing (15)NH(4)Cl or (15)NH(4)Cl in combination with all-(13)C-d-glucose allowing to produce homogenous soluble monomeric NKp30 in several formats needed for advanced NMR studies. Our optimized protocol now allows to produce routinely 10mg batches of these NKp30ex proteins per 1L of M9 production medium in four working days. The purity and identity of the produced proteins were checked by SDS-PAGE, MALDI MS peptide mapping, and high resolution ion cyclotron resonance MS. Analytical ultracentrifugation confirmed the monomeric status of the produced proteins. Long-term stability of the produced protein proved to be very good allowing its use for NMR studies using elevated temperatures. These studies should reveal further details of the interaction of NKp30 with several of its ligands including target cell surface proteins and heparin-derived oligosaccharides.


Assuntos
Receptor 3 Desencadeador da Citotoxicidade Natural/biossíntese , Receptor 3 Desencadeador da Citotoxicidade Natural/química , Sequência de Aminoácidos , Cloreto de Amônio/química , Sequência de Bases , Reatores Biológicos , Códon , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Dados de Sequência Molecular , Receptor 3 Desencadeador da Citotoxicidade Natural/genética , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Ultracentrifugação
13.
Microbiol Res ; 258: 126976, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35158298

RESUMO

Pythium is a genus of parasitic oomycetes which target plants and both nonvertebrate and vertebrate animals, including fish and mammalian species. However, several Pythium spp., such as P. oligandrum, function as mycoparasites of pathogenic fungi, bacteria, and oomycetes in soil and thus as advantageous biocontrol agents. This review primarily focuses on biochemical processes underlying their positive effects. For example, P. oligandrum degrades host cell wall polysaccharides using chitinases, cellulases, endo-ß-1,3-glucanases, and various exoglycosidases. Proteases from various classes also participate in the cell wall hydrolysis. All these processes can modify cell surface structures and help Pythium spp. compete for space and nutrition. Accordingly, enzyme secretion most likely plays a key role in plant root colonisation. Plant-P. oligandrum interactions, nevertheless, do not involve tissue injury but instead activate plant defence mechanisms, thereby strengthening future plant responses to pathogen attacks. Priming induces the phenylpropanoid and terpenoid pathways and thus synthesis of secondary metabolites, including lignin, for cell wall fortification and other metabolic adjustments. Such metabolic changes are mediated by elicitins, cell wall glycoproteins and oligandrins produced by P. oligandrum. As homologous proteins of ß-cinnamomin from Phytophthora cinnamomi with similar essential amino acids for sterol binding, oligandrins stand out for their structure, which they share with cell wall glycoproteins, albeit without the Ser-Thr-rich O-glycosylated domain for cell wall attachment. P. oligandrum also provides plant with tryptamine used for auxin synthesis, promoting plant growth. Overall, in addition to discussing plant metabolic and phytohormonal changes after P. oligandrum inoculation, we review data on P. oligandrum applications as researchers increasingly search for effective and environmentally friendly ways to protect crops. In this context, P. oligandrum emerges as a highly suitable biotechnological solution.


Assuntos
Phytophthora , Pythium , Hidrólise , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Triptaminas
14.
Protein Expr Purif ; 77(2): 178-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21284957

RESUMO

Mouse NKR-P1C(B6) receptor corresponding to NK1.1 alloantigen is one of the most widespread surface markers of mouse NK and NKT cells in C57BL/6 mice detected by monoclonal antibody PK136. Although functional studies revealed the ability of this receptor to activate both natural killing and production of cytokines upon antibody crosslinking, the ligand for NKR-P1C(B6) remains unknown. In order to initiate ligand identification, structural studies, and epitope mapping experiments, we developed a simple and efficient expression and purification protocol allowing to produce large amounts of pure soluble monomeric mouse NKR-P1C(B6). Our protein encompassed approximately half of the stalk region and the entire C-terminal globular ligand binding domain. The identity of protein that was devoid of N-terminal initiation methionine and had all three expected disulfides closed was confirmed using high resolution ion cyclotron resonance mass spectrometry. Protein produced into inclusion bodies in Escherichia coli was efficiently refolded into a unique three dimensional structure as confirmed by NMR using (1)H-(15)N-HSQC spectra of uniformly labeled protein. The exceptional purity of the protein should allow its crystallization and detailed structural investigations, and is a prerequisite for its use as a probe in ligand identification and antibody epitope mapping experiments.


Assuntos
Antígenos de Superfície/metabolismo , Corpos de Inclusão/metabolismo , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Antígenos de Superfície/isolamento & purificação , Sítios de Ligação , Clonagem Molecular , Escherichia coli , Expressão Gênica , Corpos de Inclusão/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ligantes , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/isolamento & purificação , Ligação Proteica , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Solubilidade
16.
ACS Omega ; 6(15): 10352-10361, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34056188

RESUMO

Fast photochemical oxidation of proteins (FPOP) is a recently developed technique for studying protein folding, conformations, interactions, etc. In this method, hydroxyl radicals, usually generated by KrF laser photolysis of H2O2, are used for irreversible labeling of solvent-exposed side chains of amino acids. Mapping of the oxidized residues to the protein's structure requires pinpointing of modifications using a bottom-up proteomic approach. In this work, a quadrupole time-of-flight (QTOF) mass spectrometer coupled with trapped ion mobility spectrometry (timsTOF Pro) was used for identification of oxidative modifications in a model protein. Multiple modifications on the same residues, including six modifications of histidine, were successfully resolved. Moreover, parallel accumulation-serial fragmentation (PASEF) technology allows successful sequencing of even minor populations of modified peptides. The data obtained indicate a clear improvement of the quality of the FPOP analysis from the viewpoint of the number of identified peptides bearing oxidative modifications and their precise localization. Data are available via ProteomeXchange with identifier PXD020509.

17.
Structure ; 29(4): 345-356.e8, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333006

RESUMO

TEAD transcription factors regulate gene expression through interactions with DNA and other proteins. They are crucial for the development of eukaryotic organisms and to control the expression of genes involved mostly in cell proliferation and differentiation; however, their deregulation can lead to tumorigenesis. To study the interactions of TEAD1 with M-CAT motifs and their inverted versions, the KD of each complex was determined, and H/D exchange, quantitative chemical cross-linking, molecular docking, and smFRET were utilized for structural characterization. ChIP-qPCR was employed to correlate the results with a cell line model. The results obtained showed that although the inverted motif has 10× higher KD, the same residues were affected by the presence of M-CAT in both orientations. Molecular docking and smFRET revealed that TEAD1 binds the inverted motif rotated 180°. In addition, the inverted motif was proven to be occupied by TEAD1 in Jurkat cells, suggesting that the low-affinity binding sites present in the human genome may possess biological relevance.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas Nucleares/química , Fatores de Transcrição/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Células Jurkat , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo
18.
Biochim Biophys Acta Biomembr ; 1862(9): 183310, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333856

RESUMO

Two distinct conformers of the adenylate cyclase toxin (CyaA) appear to accomplish its two parallel activities within target cell membrane. The translocating conformer would deliver the N-terminal adenylyl cyclase (AC) enzyme domain across plasma membrane into cytosol of cells, while the pore precursor conformer would assemble into oligomeric cation-selective pores and permeabilize cellular membrane. Both toxin activities then involve a membrane-interacting 'AC-to-Hly-linking segment' (residues 400 to 500). Here, we report the NMR structure of the corresponding CyaA411-490 polypeptide in dodecylphosphocholine micelles and show that it consists of two α-helices linked by an unrestrained loop. The N-terminal α-helix (Gly418 to His439) remained solvent accessible, while the C-terminal α-helix (His457 to Phe485) was fully enclosed within detergent micelles. CyaA411-490 weakly bound Ca2+ ions (apparent KD 2.6 mM) and permeabilized negatively charged lipid vesicles. At high concentrations (10 µM) the CyaA411-490 polypeptide formed stable conductance units in artificial lipid bilayers with applied voltage, suggesting its possible transmembrane orientation in the membrane-inserted toxin. Mutagenesis revealed that two clusters of negatively charged residues within the 'AC-to-Hly-linking segment' (Glu419 to Glu432 and Asp445 to Glu448) regulate the balance between the AC domain translocating and pore-forming capacities of CyaA in function of calcium concentration.


Assuntos
Toxina Adenilato Ciclase/química , Transporte Biológico/genética , Bordetella pertussis/química , Bicamadas Lipídicas/química , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/metabolismo , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/genética , AMP Cíclico/metabolismo , Hemólise/genética , Humanos , Bicamadas Lipídicas/metabolismo , Conformação Proteica em alfa-Hélice/genética
19.
Electrophoresis ; 30(3): 560-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19156768

RESUMO

Both top-down (combining protein separation with MS analysis of intact proteins) and bottom-up (MS analysis of digested proteins) proteomic approaches were used for detailed characterization of nonspecific lipid transfer protein from barley malt. The aim was obtaining high-coverage of the primary structure of the proteins and the determination of PTMs such as lipid adduction and glycation. Here we present an influence of 15 proteomic protocols (differing in applied separation technique, enzyme and digestion procedure) on the extent of the coverage of the protein primary structure. The most successful protocols were in-gel digestion with trypsin of alkylated protein and in-solution digestions with trypsin or trypsin/chymotrypsin mixture of the nonalkylated protein. Totally, full sequence coverage based on the PMF and 85% sequence coverage based on the peptide fragmentation including PTMs was obtained.


Assuntos
Proteínas de Transporte/química , Proteínas de Plantas/química , Proteômica/métodos , Sequência de Aminoácidos , Quimotripsina/química , Grão Comestível/química , Proteínas de Ligação a Ácido Graxo , Hordeum , Espectrometria de Massas , Dados de Sequência Molecular , Tripsina/química
20.
Biomolecules ; 9(10)2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561554

RESUMO

The limited information available on the structure of complexes involving transcription factors and cognate DNA response elements represents a major obstacle in the quest to understand their mechanism of action at the molecular level. We implemented a concerted structural proteomics approach, which combined hydrogen-deuterium exchange (HDX), quantitative protein-protein and protein-nucleic acid cross-linking (XL), and homology analysis, to model the structure of the complex between the full-length DNA binding domain (DBD) of Forkhead box protein O4 (FOXO4) and its DNA binding element (DBE). The results confirmed that FOXO4-DBD assumes the characteristic forkhead topology shared by these types of transcription factors, but its binding mode differs significantly from those of other members of the family. The results showed that the binding interaction stabilized regions that were rather flexible and disordered in the unbound form. Surprisingly, the conformational effects were not limited only to the interface between bound components, but extended also to distal regions that may be essential to recruiting additional factors to the transcription machinery. In addition to providing valuable new insights into the binding mechanism, this project provided an excellent evaluation of the merits of structural proteomics approaches in the investigation of systems that are not directly amenable to traditional high-resolution techniques.


Assuntos
DNA/química , Fatores de Transcrição/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Medição da Troca de Deutério , Espectrometria de Massas , Estrutura Molecular , Elementos de Resposta , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA