Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 184(13): 3376-3393.e17, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34043940

RESUMO

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Assuntos
Farmacorresistência Bacteriana/genética , Metagenômica , Microbiota/genética , População Urbana , Biodiversidade , Bases de Dados Genéticas , Humanos
2.
Regul Toxicol Pharmacol ; 140: 105388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061083

RESUMO

In 2013, the Global Coalition for Regulatory Science Research (GCRSR) was established with members from over ten countries (www.gcrsr.net). One of the main objectives of GCRSR is to facilitate communication among global regulators on the rise of new technologies with regulatory applications through the annual conference Global Summit on Regulatory Science (GSRS). The 11th annual GSRS conference (GSRS21) focused on "Regulatory Sciences for Food/Drug Safety with Real-World Data (RWD) and Artificial Intelligence (AI)." The conference discussed current advancements in both AI and RWD approaches with a specific emphasis on how they impact regulatory sciences and how regulatory agencies across the globe are pursuing the adaptation and oversight of these technologies. There were presentations from Brazil, Canada, India, Italy, Japan, Germany, Switzerland, Singapore, the United Kingdom, and the United States. These presentations highlighted how various agencies are moving forward with these technologies by either improving the agencies' operation and/or preparing regulatory mechanisms to approve the products containing these innovations. To increase the content and discussion, the GSRS21 hosted two debate sessions on the question of "Is Regulatory Science Ready for AI?" and a workshop to showcase the analytical data tools that global regulatory agencies have been using and/or plan to apply to regulatory science. Several key topics were highlighted and discussed during the conference, such as the capabilities of AI and RWD to assist regulatory science policies for drug and food safety, the readiness of AI and data science to provide solutions for regulatory science. Discussions highlighted the need for a constant effort to evaluate emerging technologies for fit-for-purpose regulatory applications. The annual GSRS conferences offer a unique platform to facilitate discussion and collaboration across regulatory agencies, modernizing regulatory approaches, and harmonizing efforts.


Assuntos
Inteligência Artificial , Inocuidade dos Alimentos , Estados Unidos , Alemanha , Itália , Suíça
3.
Genome Res ; 29(2): 223-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30606742

RESUMO

The aberrant activities of transcription factors such as the androgen receptor (AR) underpin prostate cancer development. While the AR cis-regulation has been extensively studied in prostate cancer, information pertaining to the spatial architecture of the AR transcriptional circuitry remains limited. In this paper, we propose a novel framework to profile long-range chromatin interactions associated with AR and its collaborative transcription factor, erythroblast transformation-specific related gene (ERG), using chromatin interaction analysis by paired-end tag (ChIA-PET). We identified ERG-associated long-range chromatin interactions as a cooperative component in the AR-associated chromatin interactome, acting in concert to achieve coordinated regulation of a subset of AR target genes. Through multifaceted functional data analysis, we found that AR-ERG interaction hub regions are characterized by distinct functional signatures, including bidirectional transcription and cotranscription factor binding. In addition, cancer-associated long noncoding RNAs were found to be connected near protein-coding genes through AR-ERG looping. Finally, we found strong enrichment of prostate cancer genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) at AR-ERG co-binding sites participating in chromatin interactions and gene regulation, suggesting GWAS target genes identified from chromatin looping data provide more biologically relevant findings than using the nearest gene approach. Taken together, our results revealed an AR-ERG-centric higher-order chromatin structure that drives coordinated gene expression in prostate cancer progression and the identification of potential target genes for therapeutic intervention.


Assuntos
Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Cromatina/química , Redes Reguladoras de Genes , Genoma Humano , Humanos , Masculino , Proteínas de Fusão Oncogênica/análise , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/metabolismo , RNA Longo não Codificante/metabolismo , Regulador Transcricional ERG/metabolismo , Regulador Transcricional ERG/fisiologia
4.
PLoS Comput Biol ; 17(9): e1009343, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495960

RESUMO

CONCLUSION: BEEM-Static provides new opportunities for mining ecologically interpretable interactions and systems insights from the growing corpus of microbiome data.


Assuntos
Ecossistema , Microbioma Gastrointestinal , Biomassa , Estudos Transversais , Conjuntos de Dados como Assunto , Humanos
5.
Arch Toxicol ; 96(5): 1455-1471, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35226136

RESUMO

The micronucleus (MN) assay is widely used as part of a battery of tests applied to evaluate the genotoxic potential of chemicals, including new food additives and novel food ingredients. Micronucleus assays typically utilise homogenous in vitro cell lines which poorly recapitulate the physiology, biochemistry and genomic events in the gut, the site of first contact for ingested materials. Here we have adapted and validated the MN endpoint assay protocol for use with complex 3D reconstructed intestinal microtissues; we have named this new protocol the reconstructed intestine micronucleus cytome (RICyt) assay. Our data suggest the commercial 3D microtissues replicate the physiological, biochemical and genomic responses of native human small intestine to exogenous compounds. Tissues were shown to maintain log-phase proliferation throughout the period of exposure and expressed low background MN. Analysis using the RICyt assay protocol revealed the presence of diverse cell types and nuclear anomalies (cytome) in addition to MN, indicating evidence for comprehensive DNA damage and mode(s) of cell death reported by the assay. The assay correctly identified and discriminated direct-acting clastogen, aneugen and clastogen requiring exogenous metabolic activation, and a non-genotoxic chemical. We are confident that the genotoxic response in the 3D microtissues more closely resembles the native tissues due to the inherent tissue architecture, surface area, barrier effects and tissue matrix interactions. This proof-of-concept study highlights the RICyt MN cytome assay in 3D reconstructed intestinal microtissues is a promising tool for applications in predictive toxicology.


Assuntos
Dano ao DNA , Micronúcleos com Defeito Cromossômico , Aneugênicos , Humanos , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade
6.
J Allergy Clin Immunol ; 147(4): 1329-1340, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33039480

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common skin disease affecting up to 20% of the global population, with significant clinical heterogeneity and limited information about molecular subtypes and actionable biomarkers. Although alterations in the skin microbiome have been described in subjects with AD during progression to flare state, the prognostic value of baseline microbiome configurations has not been explored. OBJECTIVE: Our aim was to identify microbial signatures on AD skin that are predictive of disease fate. METHODS: Nonlesional skin of patients with AD and healthy control subjects were sampled at 2 time points separated by at least 4 weeks. Using whole metagenome analysis of skin microbiomes of patients with AD and control subjects (n = 49 and 189 samples), we identified distinct microbiome configurations (dermotypes A and B). Blood was collected for immunophenotyping, and skin surface samples were analyzed for correlations with natural moisturizing factors and antimicrobial peptides. RESULTS: Dermotypes were robust and validated across 2 additional cohorts (63 individuals), with strong enrichment of subjects with AD in dermotype B. Dermotype B was characterized by reduced microbial richness, depletion of Cutibacterium acnes, Dermacoccus and Methylobacterium species, individual-specific outlier abundance of Staphylococcus species (eg, S epidermidis, S capitis, S aureus), and enrichment in metabolic pathways (eg, branched chain amino acids and arginine biosynthesis) and virulence genes (eg, ß-toxin, δ-toxin) that defined a pathogenic ecology. Skin surface and circulating host biomarkers exhibited a distinct microbial-associated signature that was further reflected in more severe itching, frequent flares, and increased disease severity in patients harboring the dermotype B microbiome. CONCLUSION: We report distinct clusters of microbial profiles that delineate the role of microbiome configurations in AD heterogeneity, highlight a mechanism for ongoing inflammation, and provide prognostic utility toward microbiome-based disease stratification.


Assuntos
Dermatite Atópica/microbiologia , Microbiota , Pele/microbiologia , Adolescente , Adulto , Bactérias/genética , Bactérias/patogenicidade , Biomarcadores/sangue , Citocinas/sangue , Dermatite Atópica/sangue , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Índice de Gravidade de Doença , Pele/química , Pele/metabolismo , Testes Cutâneos , Virulência/genética , Água/metabolismo , Adulto Jovem
7.
Hepatology ; 67(1): 282-295, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28646502

RESUMO

The gut microbiota possesses diverse metabolic activities, but its contribution toward heterogeneous toxicological responses is poorly understood. In this study, we investigated the role of the liver-gut microbiota axis in underpinning the hepatotoxicity of tacrine. We employed an integrated strategy combining pharmacokinetics, toxicology, metabonomics, genomics, and metagenomics to elucidate and validate the mechanism of tacrine-induced hepatotoxicity in Lister hooded rats. Pharmacokinetic studies in rats demonstrated 3.3-fold higher systemic exposure to tacrine in strong responders that experienced transaminitis, revealing enhanced enterohepatic recycling of deglucuronidated tacrine in this subgroup, not attributable to variation in hepatic disposition gene expression. Metabonomic studies implicated variations in gut microbial activities that mapped onto tacrine-induced transaminitis. Metagenomics delineated greater deglucuronidation capabilities in strong responders, based on differential gut microbial composition (e.g., Lactobacillus, Bacteroides, and Enterobacteriaceae) and approximately 9% higher ß-glucuronidase gene abundance compared with nonresponders. In the validation study, coadministration with oral ß-glucuronidase derived from Escherichia coli and pretreatment with vancomycin and imipenem significantly modulated the susceptibility to tacrine-induced transaminitis in vivo. CONCLUSION: This study establishes pertinent gut microbial influences in modifying the hepatotoxicity of tacrine, providing insights for personalized medicine initiatives. (Hepatology 2018;67:282-295).


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Tacrina/toxicidade , Animais , Biópsia por Agulha , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Testes de Função Hepática , Masculino , Distribuição Aleatória , Ratos , Ratos Endogâmicos , Valores de Referência , Índice de Gravidade de Doença , Tacrina/farmacocinética , Tacrina/farmacologia
8.
Bioinformatics ; 32(19): 2981-7, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27312413

RESUMO

MOTIVATION: Microbial consortia are frequently defined by numerous interactions within the community that are key to understanding their function. While microbial interactions have been extensively studied experimentally, information regarding them is dispersed in the scientific literature. As manual collation is an infeasible option, automated data processing tools are needed to make this information easily accessible. RESULTS: We present @MInter, an automated information extraction system based on Support Vector Machines to analyze paper abstracts and infer microbial interactions. @MInter was trained and tested on a manually curated gold standard dataset of 735 species interactions and 3917 annotated abstracts, constructed as part of this study. Cross-validation analysis showed that @MInter was able to detect abstracts pertaining to one or more microbial interactions with high specificity (specificity = 95%, AUC = 0.97). Despite challenges in identifying specific microbial interactions in an abstract (interaction level recall = 95%, precision = 25%), @MInter was shown to reduce annotator workload 13-fold compared to alternate approaches. Applying @MInter to 175 bacterial species abundant on human skin, we identified a network of 357 literature-reported microbial interactions, demonstrating its utility for the study of microbial communities. AVAILABILITY AND IMPLEMENTATION: @MInter is freely available at https://github.com/CSB5/atminter CONTACT: nagarajann@gis.a-star.edu.sg SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Mineração de Dados , Interações Microbianas , Processamento Eletrônico de Dados , Máquina de Vetores de Suporte
9.
Methods ; 102: 12-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27025964

RESUMO

Microorganisms play a vital role in various ecosystems and characterizing interactions between them is an essential step towards understanding the organization and function of microbial communities. Computational prediction has recently become a widely used approach to investigate microbial interactions. We provide a thorough review of emerging computational methods organized by the type of data they employ. We highlight three major challenges in inferring interactions using metagenomic survey data and discuss the underlying assumptions and mathematics of interaction inference algorithms. In addition, we review interaction prediction methods relying on metabolic pathways, which are increasingly used to reveal mechanisms of interactions. Furthermore, we also emphasize the importance of mining the scientific literature for microbial interactions - a largely overlooked data source for experimentally validated interactions.


Assuntos
Simulação por Computador , Metagenômica/métodos , Interações Microbianas , Mineração de Dados/métodos
10.
Nucleic Acids Res ; 43(7): e44, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25572314

RESUMO

Extensive and multi-dimensional data sets generated from recent cancer omics profiling projects have presented new challenges and opportunities for unraveling the complexity of cancer genome landscapes. In particular, distinguishing the unique complement of genes that drive tumorigenesis in each patient from a sea of passenger mutations is necessary for translating the full benefit of cancer genome sequencing into the clinic. We address this need by presenting a data integration framework (OncoIMPACT) to nominate patient-specific driver genes based on their phenotypic impact. Extensive in silico and in vitro validation helped establish OncoIMPACT's robustness, improved precision over competing approaches and verifiable patient and cell line specific predictions (2/2 and 6/7 true positives and negatives, respectively). In particular, we computationally predicted and experimentally validated the gene TRIM24 as a putative novel amplified driver in a melanoma patient. Applying OncoIMPACT to more than 1000 tumor samples, we generated patient-specific driver gene lists in five different cancer types to identify modes of synergistic action. We also provide the first demonstration that computationally derived driver mutation signatures can be overall superior to single gene and gene expression based signatures in enabling patient stratification and prognostication. Source code and executables for OncoIMPACT are freely available from http://sourceforge.net/projects/oncoimpact.


Assuntos
Melanoma/genética , Algoritmos , Humanos , Melanoma/fisiopatologia , Mutação , Medição de Risco , Análise de Sobrevida
11.
Proc Natl Acad Sci U S A ; 111(33): 12103-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25028492

RESUMO

Fastidious anaerobic bacteria play critical roles in environmental bioremediation of halogenated compounds. However, their characterization and application have been largely impeded by difficulties in growing them in pure culture. Thus far, no pure culture has been reported to respire on the notorious polychlorinated biphenyls (PCBs), and functional genes responsible for PCB detoxification remain unknown due to the extremely slow growth of PCB-respiring bacteria. Here we report the successful isolation and characterization of three Dehalococcoides mccartyi strains that respire on commercial PCBs. Using high-throughput metagenomic analysis, combined with traditional culture techniques, tetrachloroethene (PCE) was identified as a feasible alternative to PCBs to isolate PCB-respiring Dehalococcoides from PCB-enriched cultures. With PCE as an alternative electron acceptor, the PCB-respiring Dehalococcoides were boosted to a higher cell density (1.2 × 10(8) to 1.3 × 10(8) cells per mL on PCE vs. 5.9 × 10(6) to 10.4 × 10(6) cells per mL on PCBs) with a shorter culturing time (30 d on PCE vs. 150 d on PCBs). The transcriptomic profiles illustrated that the distinct PCB dechlorination profile of each strain was predominantly mediated by a single, novel reductive dehalogenase (RDase) catalyzing chlorine removal from both PCBs and PCE. The transcription levels of PCB-RDase genes are 5-60 times higher than the genome-wide average. The cultivation of PCB-respiring Dehalococcoides in pure culture and the identification of PCB-RDase genes deepen our understanding of organohalide respiration of PCBs and shed light on in situ PCB bioremediation.


Assuntos
Chloroflexi/genética , Genoma Bacteriano , Bifenilos Policlorados/metabolismo , Chloroflexi/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
12.
EMBO J ; 31(12): 2810-23, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22531786

RESUMO

Transcriptional corepressors are frequently aberrantly over-expressed in prostate cancers. However, their crosstalk with the Androgen receptor (AR), a key player in prostate cancer development, is unclear. Using ChIP-Seq, we generated extensive global binding maps of AR, ERG, and commonly over-expressed transcriptional corepressors including HDAC1, HDAC2, HDAC3, and EZH2 in prostate cancer cells. Surprisingly, our results revealed that ERG, HDACs, and EZH2 are directly involved in androgen-regulated transcription and wired into an AR centric transcriptional network via a spectrum of distal enhancers and/or proximal promoters. Moreover, we showed that similar to ERG, these corepressors function to mediate repression of AR-induced transcription including cytoskeletal genes that promote epithelial differentiation and inhibit metastasis. Specifically, we demonstrated that the direct suppression of Vinculin expression by ERG, EZH2, and HDACs leads to enhanced invasiveness of prostate cancer cells. Taken together, our results highlight a novel mechanism by which, ERG working together with oncogenic corepressors including HDACs and the polycomb protein, EZH2, could impede epithelial differentiation and contribute to prostate cancer progression, through directly modulating the transcriptional output of AR.


Assuntos
Androgênios/biossíntese , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias da Próstata/fisiopatologia , Proteínas Repressoras/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Células Epiteliais/fisiologia , Humanos , Masculino , Ligação Proteica
13.
EMBO J ; 30(13): 2569-81, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21572391

RESUMO

Oestrogen receptor α (ERα) is key player in the progression of breast cancer. Recently, the cistrome and interactome of ERα were mapped in breast cancer cells, revealing the importance of spatial organization in oestrogen-mediated transcription. However, the underlying mechanism of this process is unclear. Here, we show that ERα binding sites (ERBS) identified from the Chromatin Interaction Analysis-Paired End DiTag of ERα are enriched for AP-2 motifs. We demonstrate the transcription factor, AP-2γ, which has been implicated in breast cancer oncogenesis, binds to ERBS in a ligand-independent manner. Furthermore, perturbation of AP-2γ expression impaired ERα DNA binding, long-range chromatin interactions, and gene transcription. In genome-wide analyses, we show that a large number of AP-2γ and ERα binding events converge together across the genome. The majority of these shared regions are also occupied by the pioneer factor, FoxA1. Molecular studies indicate there is functional interplay between AP-2γ and FoxA1. Finally, we show that most ERBS associated with long-range chromatin interactions are colocalized with AP-2γ and FoxA1. Together, our results suggest AP-2γ is a novel collaborative factor in ERα-mediated transcription.


Assuntos
Cromatina/metabolismo , Receptor alfa de Estrogênio/fisiologia , Fator de Transcrição AP-2/fisiologia , Transcrição Gênica , Sítios de Ligação/genética , Cromatina/genética , Imunoprecipitação da Cromatina , Análise por Conglomerados , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Análise em Microsséries , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA Interferente Pequeno/farmacologia , Elementos de Resposta/genética , Fator de Transcrição AP-2/antagonistas & inibidores , Fator de Transcrição AP-2/genética , Transcrição Gênica/genética , Transcrição Gênica/fisiologia , Células Tumorais Cultivadas
14.
Environ Sci Technol ; 49(24): 14319-25, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26551549

RESUMO

Dehalococcoides mccartyi strain JNA detoxifies highly chlorinated polychlorinated biphenyl (PCB) mixtures via 85 distinct dechlorination reactions, suggesting that it has great potential for PCB bioremediation. However, its genomic and functional gene information remain unknown due to extremely slow growth of strain JNA with PCBs. In this study, we used tetracholorethene (PCE) as an alternative electron acceptor to grow sufficient biomass of strain JNA for subsequent genome sequencing and functional gene identification. Analysis of the assembled draft genome (1 462 509 bp) revealed the presence of 29 putative reductive dehalogenase (RDase) genes. Among them, JNA_RD8 and JNA_RD11 genes were highly transcribed in both PCE- and PCB-fed cultures. Furthermore, in vitro assays with crude cell lysate from PCE grown cells revealed dechlorination activity against both PCE and 2,2',3,4,4',5,5'-heptachlorobiphenyl. These data suggest that both JNA_RD8 and JNA_RD11 may be bifunctional PCE/PCB RDases. This study deepens the knowledge of organohalide respiration of PCBs and facilitates in situ PCB-bioremediation with strain JNA.


Assuntos
Chloroflexi/genética , Genoma Bacteriano , Halogenação , Bifenilos Policlorados/metabolismo , Tetracloroetileno/metabolismo , Biodegradação Ambiental , Bioensaio , Chloroflexi/metabolismo , Genes Bacterianos , Genômica , Transcrição Gênica
15.
Microbiol Spectr ; 12(6): e0327623, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712931

RESUMO

The unexpected foodborne outbreak in Singapore in 2015 has accentuated Group B Streptococcus (GBS, Streptococcus agalactiae) sequence type 283 as an emerging foodborne pathogen transmitted via the consumption of contaminated raw freshwater fish. Isolation-based workflows utilizing conventional microbiological and whole-genome sequencing methods are commonly used to support biosurveillance efforts critical for the control management of this emerging foodborne pathogen. However, these isolation-based workflows tend to have relatively long turnaround times that hamper a timely response for implementing risk mitigation. To address this gap, we have developed a metagenomics-based workflow for the simultaneous detection and genomic characterization of GBS in raw freshwater fish. Notably, our validation results showed that this metagenomics-based workflow could achieve comparable accuracy and potentially better detection limits while halving the turnaround time (from 2 weeks to 5 days) relative to an isolation-based workflow. The metagenomics-based workflow was also successfully adapted for use on a portable long-read nanopore sequencer, demonstrating its potential applicability for real-time point-of-need testing. Using GBS in freshwater fish as an example, this work represents a proof-of-concept study that supports the feasibility and validity of metagenomics as a rapid and accurate test methodology for the detection and genomic characterization of foodborne pathogens in complex food matrices. IMPORTANCE: The need for a rapid and accurate food microbiological testing method is apparent for a timely and effective foodborne outbreak response. This is particularly relevant for emerging foodborne pathogens such as Group B Streptococcus (GBS) whose associated food safety risk might be undercharacterized. By using GBS in raw freshwater fish as a case example, this study describes the development of a metagenomics-based workflow for rapid food microbiological safety testing and surveillance. This study can inform as a working model for various foodborne pathogens in other complex food matrices, paving the way for future methodological development of metagenomics for food microbiological safety testing.


Assuntos
Peixes , Metagenômica , Streptococcus agalactiae , Fluxo de Trabalho , Metagenômica/métodos , Animais , Peixes/microbiologia , Streptococcus agalactiae/genética , Streptococcus agalactiae/isolamento & purificação , Água Doce/microbiologia , Genoma Bacteriano/genética , Singapura , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Humanos
16.
Microorganisms ; 11(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37110268

RESUMO

Rapid and robust detection assays for Salmonella Enteritidis (SE) in shell eggs are essential to enable a quick testing turnaround time (TAT) at the earliest checkpoint and to ensure effective food safety control. Real-time polymerase chain reaction (qPCR) assays provide a workaround for the protracted lead times associated with conventional Salmonella diagnostic testing. However, DNA-based analysis cannot reliably discriminate between signals from viable and dead bacteria. We developed a strategy based on an SE qPCR assay that can be integrated into system testing to accelerate the detection of viable SE in egg-enriched cultures and verify the yielded SE isolates. The specificity of the assay was evaluated against 89 Salmonella strains, and SE was accurately identified in every instance. To define the indicator for a viable bacteria readout, viable or heat-inactivated SE were spiked into shell egg contents to generate post-enriched, artificially contaminated cultures to establish the quantification cycle (Cq) for viable SE. Our study has demonstrated that this technique could potentially be applied to accurately identify viable SE during the screening stage of naturally contaminated shell eggs following enrichment to provide an early alert, and that it consistently identified the serotypes of SE isolates in a shorter time than conventional testing.

17.
Nat Microbiol ; 7(4): 486-496, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365786

RESUMO

Lessons learnt from the COVID-19 pandemic include increased awareness of the potential for zoonoses and emerging infectious diseases that can adversely affect human health. Although emergent viruses are currently in the spotlight, we must not forget the ongoing toll of morbidity and mortality owing to antimicrobial resistance in bacterial pathogens and to vector-borne, foodborne and waterborne diseases. Population growth, planetary change, international travel and medical tourism all contribute to the increasing frequency of infectious disease outbreaks. Surveillance is therefore of crucial importance, but the diversity of microbial pathogens, coupled with resource-intensive methods, compromises our ability to scale-up such efforts. Innovative technologies that are both easy to use and able to simultaneously identify diverse microorganisms (viral, bacterial or fungal) with precision are necessary to enable informed public health decisions. Metagenomics-enabled surveillance methods offer the opportunity to improve detection of both known and yet-to-emerge pathogens.


Assuntos
COVID-19 , Vírus , Animais , Humanos , Metagenômica/métodos , Pandemias , Vírus/genética , Zoonoses
18.
Nat Microbiol ; 7(10): 1516-1524, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109646

RESUMO

Long-term colonization of the gut microbiome by carbapenemase-producing Enterobacteriaceae (CPE) is a growing area of public health concern as it can lead to community transmission and rapid increase in cases of life-threatening CPE infections. Here, leveraging the observation that many subjects are decolonized without interventions within a year, we used longitudinal shotgun metagenomics (up to 12 timepoints) for detailed characterization of ecological and evolutionary dynamics in the gut microbiome of a cohort of CPE-colonized subjects and family members (n = 46; 361 samples). Subjects who underwent decolonization exhibited a distinct ecological shift marked by recovery of microbial diversity, key commensals and anti-inflammatory pathways. In addition, colonization was marked by elevated but unstable Enterobacteriaceae abundances, which exhibited distinct strain-level dynamics for different species (Escherichia coli and Klebsiella pneumoniae). Finally, comparative analysis with whole-genome sequencing data from CPE isolates (n = 159) helped identify substrain variation in key functional genes and the presence of highly similar E. coli and K. pneumoniae strains with variable resistance profiles and plasmid sharing. These results provide an enhanced view into how colonization by multi-drug-resistant bacteria associates with altered gut ecology and can enable transfer of resistance genes, even in the absence of overt infection and antibiotic usage.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Microbioma Gastrointestinal , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Escherichia coli/genética , Humanos , Klebsiella pneumoniae/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
19.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878036

RESUMO

The ability to adapt to low-nutrient microenvironments is essential for tumor cell survival and progression in solid cancers, such as colorectal carcinoma (CRC). Signaling by the NF-κB transcription factor pathway associates with advanced disease stages and shorter survival in patients with CRC. NF-κB has been shown to drive tumor-promoting inflammation, cancer cell survival, and intestinal epithelial cell (IEC) dedifferentiation in mouse models of CRC. However, whether NF-κB affects the metabolic adaptations that fuel aggressive disease in patients with CRC is unknown. Here, we identified carboxylesterase 1 (CES1) as an essential NF-κB-regulated lipase linking obesity-associated inflammation with fat metabolism and adaptation to energy stress in aggressive CRC. CES1 promoted CRC cell survival via cell-autonomous mechanisms that fuel fatty acid oxidation (FAO) and prevent the toxic build-up of triacylglycerols. We found that elevated CES1 expression correlated with worse outcomes in overweight patients with CRC. Accordingly, NF-κB drove CES1 expression in CRC consensus molecular subtype 4 (CMS4), which is associated with obesity, stemness, and inflammation. CES1 was also upregulated by gene amplifications of its transcriptional regulator HNF4A in CMS2 tumors, reinforcing its clinical relevance as a driver of CRC. This subtype-based distribution and unfavorable prognostic correlation distinguished CES1 from other intracellular triacylglycerol lipases and suggest CES1 could provide a route to treat aggressive CRC.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Neoplasias Colorretais/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Triglicerídeos/metabolismo , Hidrolases de Éster Carboxílico/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Proteínas de Neoplasias/genética , Triglicerídeos/genética
20.
Nat Ecol Evol ; 4(9): 1256-1267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632261

RESUMO

Loss of diversity in the gut microbiome can persist for extended periods after antibiotic treatment, impacting microbiome function, antimicrobial resistance and probably host health. Despite widespread antibiotic use, our understanding of the species and metabolic functions contributing to gut microbiome recovery is limited. Using data from 4 discovery cohorts in 3 continents comprising >500 microbiome profiles from 117 individuals, we identified 21 bacterial species exhibiting robust association with ecological recovery post antibiotic therapy. Functional and growth-rate analysis showed that recovery is supported by enrichment in specific carbohydrate-degradation and energy-production pathways. Association rule mining on 782 microbiome profiles from the MEDUSA database enabled reconstruction of the gut microbial 'food web', identifying many recovery-associated bacteria as keystone species, with the ability to use host- and diet-derived energy sources, and support repopulation of other gut species. Experiments in a mouse model recapitulated the ability of recovery-associated bacteria (Bacteroides thetaiotaomicron and Bifidobacterium adolescentis) to promote recovery with synergistic effects, providing a boost of two orders of magnitude to microbial abundance in early time points and faster maturation of microbial diversity. The identification of specific species and metabolic functions promoting recovery opens up opportunities for rationally determining pre- and probiotic formulations offering protection from long-term consequences of frequent antibiotic usage.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Antibacterianos , Bactérias/genética , Humanos , Metagenoma , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA