Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(16): e2307175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032159

RESUMO

Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells are an attractive choice for a bottom cell of the low-cost and environmental tandem solar cells with perovskite. However, the progress in developing efficient perovskite/CZTSSe tandem solar cells has been hindered by the lack of high performance of the CZTSSe bottom cell. Here, an efficient CZTSSe bottom cell is demonstrated by adopting a facile and effective CsF treatment process. It is found that the CsF treatment not only facilitates grain growth and improves phase homogeneity by suppressing the detrimental deep-level defects and secondary phases, but also induces larger band bending and stronger drift force at the P-N junction. As a result, the carrier extraction/transport can be effectively accelerated, while reducing the interfacial recombination. These combined effects eventually result in a significant performance enhancement from 8.38% to 10.20%. The CsF-treated CZTSSe solar cell is finally applied to the mechanically-stacked perovskite/CZTSSe 4-terminal tandem cell by coupling a semi-transparent perovskite top cell, which exhibits the highest reported tandem efficiency of 23.01%.

2.
ACS Nano ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037642

RESUMO

Inducing strain in the lattice effectively enhances the intrinsic activity of electrocatalysts by shifting the metal's d-band center and tuning the binding energy of reaction intermediates. NiFe-layered double hydroxides (NiFe LDHs) are promising electrocatalysts for the oxygen evolution reaction (OER) due to their cost-effectiveness and high catalytic activity. The distorted ß-NiOOH phase produced by the Jahn-Teller effect under the oxidation polarization is known to exhibit superior catalytic activity, but it eventually transforms to the undistorted γ-NiOOH phase during the OER process. Such a reversible lattice distortion limits the OER activity. In this study, we propose a facile boron tungstate (BWO) anion intercalation method to induce irreversible lattice distortion in NiFe LDHs, leading to significantly enhanced OER activity. Strong interactions with BWO anions induce significant stress on the LDH's metal-hydroxide slab, leading to an expansion of metal-oxygen bonds and subsequent lattice distortion. In situ Raman spectroscopy revealed that lattice-distorted NiFe LDHs (D-NiFe LDHs) stabilize the ß-NiOOH phase under the OER conditions. Consequently, D-NiFe LDHs exhibited low OER overpotentials (209 and 276 mV for 10 and 500 mA cm-2, respectively), along with a modest Tafel slope (33.4 mV dec-1). Moreover, D-NiFe LDHs demonstrated excellent stability at 500 mA cm-2 for 50 h, indicating that the lattice distortion of the LDHs is irreversible. The intercalation-induced lattice strain reported in this study can provide a general strategy to enhance the activity of electrocatalysts.

3.
ACS Appl Mater Interfaces ; 15(37): 43933-43941, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37675887

RESUMO

Highly active, stable, and low-cost oxygen evolution reaction (OER) electrocatalysts are urgently needed for the realization of large-scale industrial hydrogen production via water electrolysis. Layered double hydroxides (LDHs) stand out as one of the most promising nonprecious electrocatalysts worth pursuing. Here, a hierarchical heterogeneous Ni2+Fe3+@Ni2+Fe2+ LDH was successfully synthesized via a sequential electrodeposition technique using separate electrolytes containing iron precursors with different valence states (Fe2+, Fe3+). The underlying highly crystalline Ni2+Fe2+ LDH nanosheet array provides a large surface for the catalytically more active Ni2+Fe3+ LDH overlayer with low crystallinity. The resulting Ni2+Fe3+@Ni2+Fe2+ LDH demonstrates excellent OER activity with overpotentials of 218 and 265 mV to reach current densities of 10 and 100 mA cm-2, respectively, as well as good long-term stability for 30 h even at a high current density of 500 mA cm-2. In an overall water splitting, an electrolyzer using an electrocatalyst of Sn4P3/CoP2 as a cathode requires only a cell voltage of 1.55 V at 10 mA cm-2. Furthermore, the solar-powered overall water splitting system consisting of our electrolyzer and a perovskite/Si tandem solar cell exhibits a high solar-to-hydrogen conversion efficiency of 15.3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA