Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Sci ; 29(1): 17, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255899

RESUMO

BACKGROUND: Androgenetic alopecia (AGA) is a genetic disorder caused by dihydrotestosterone (DHT), accompanied by the senescence of androgen-sensitive dermal papilla cells (DPCs) located in the base of hair follicles. DHT causes DPC senescence in AGA through mitochondrial dysfunction. However, the mechanism of this pathogenesis remains unknown. In this study, we investigated the protective role of cyanidins on DHT-induced mitochondrial dysfunction and DPC senescence and the regulatory mechanism involved. METHODS: DPCs were used to investigate the effect of DHT on mitochondrial dysfunction with MitoSOX and Rhod-2 staining. Senescence-associated ß-galactosidase activity assay was performed to examine the involvement of membrane AR-mediated signaling in DHT-induced DPC senescence. AGA mice model was used to study the cyanidins on DHT-induced hair growth deceleration. RESULTS: Cyanidin 3-O-arabinoside (C3A) effectively decreased DHT-induced mtROS accumulation in DPCs, and C3A reversed the DHT-induced DPC senescence. Excessive mitochondrial calcium accumulation was blocked by C3A. C3A inhibited p38-mediated voltage-dependent anion channel 1 (VDAC1) expression that contributes to mitochondria-associated ER membrane (MAM) formation and transfer of calcium via VDAC1-IP3R1 interactions. DHT-induced MAM formation resulted in increase of DPC senescence. In AGA mice models, C3A restored DHT-induced hair growth deceleration, which activated hair follicle stem cell proliferation. CONCLUSIONS: C3A is a promising natural compound for AGA treatments against DHT-induced DPC senescence through reduction of MAM formation and mitochondrial dysfunction.


Assuntos
Di-Hidrotestosterona , Folículo Piloso , Animais , Antocianinas , Senescência Celular , Di-Hidrotestosterona/metabolismo , Di-Hidrotestosterona/farmacologia , Camundongos , Mitocôndrias
2.
Autophagy ; 20(7): 1505-1522, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409852

RESUMO

Damaged mitochondria accumulation in diabetes is one of the main features that contribute to increased incidence of cognitive impairment by inducing apoptosis. Butyrate is a major metabolite produced by microbiota that has neuroprotective effects by regulating mitochondrial function. However, detailed mechanisms underlying how butyrate can regulate neuronal mitophagy remain unclear. Here, we examined the regulatory effects of sodium butyrate (NaB) on high glucose-induced mitophagy dysregulation, neuronal apoptosis, and cognitive impairment and its underlying mechanisms in human-induced pluripotent stem cell-derived neurons, SH-SY5Ys, and streptozotocin (STZ)-induced diabetic mice. In our results, diabetic mice showed gut-microbiota dysbiosis, especially a decreased number of butyrate-producing bacteria and reduced NaB plasma concentration. NaB ameliorated high glucose-induced neuronal mitochondrial dysfunction by recovering PRKN/Parkin-mediated mitophagy. High glucose-induced reactive oxygen species (ROS) and -inhibited PRKAA/AMPKα stimulated the RELA/p65-HDAC8 complex, which downregulated PRKN protein expression by binding to the PRKN promoter region. NaB restored PRKN expression by blocking RELA nuclear translocation and directly inhibiting HDAC8 in the nucleus. In addition, HDAC8 overexpression inhibited the positive effect of NaB on high glucose-induced mitophagy dysfunction and neuronal apoptosis. Oral administration of NaB improved cognitive impairment in diabetic mice by restoring mitophagy in the hippocampus. Taken together, NaB ameliorates neuronal mitophagy through PRKN restoration by inhibiting RELA-HDAC8 complexes, suggesting that NaB is an important substance for protecting neuronal apoptosis in diabetes-associated cognitive impairment.


Assuntos
Ácido Butírico , Glucose , Histona Desacetilases , Mitofagia , Neurônios , Fator de Transcrição RelA , Animais , Mitofagia/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Glucose/metabolismo , Ácido Butírico/farmacologia , Humanos , Camundongos , Fator de Transcrição RelA/metabolismo , Histona Desacetilases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Repressoras/metabolismo
3.
Autophagy ; 19(10): 2752-2768, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37357416

RESUMO

ABBREVIATIONS: Aß: amyloid ß; AD: Alzheimer disease; AMPK: 5' adenosine monophosphate-activated protein kinase; CTSB: cathepsin B; CTSD: cathepsin D; DM: diabetes mellitus; ESCRT: endosomal sorting complex required for transport; FBXO27: F-box protein 27; iPSC-NDs: induced pluripotent stem cell-derived neuronal differentiated cells; LAMP1: lysosomal-associated membrane protein 1; LMP: lysosomal membrane permeabilization; LRSAM1: leucine rich repeat and sterile alpha motif containing 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; p-MAPT/tau: phosphorylated microtubule associated protein tau; ROS: reactive oxygen species; STZ: streptozotocin; TFE3: transcription factor E3; TFEB: transcription factor EB; TRIM16: tripartite motif containing 16; UBE2QL1: ubiquitin conjugating enzyme E2 Q family like 1; VCP: valosin containing protein.


Assuntos
Autofagia , Macroautofagia , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Glucose/metabolismo , Lisossomos/metabolismo
4.
Br J Pharmacol ; 179(15): 3934-3950, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35297035

RESUMO

BACKGROUND AND PURPOSE: The relationship between hyperglycaemia-induced retromer dysfunction impairing intracellular trafficking and Alzheimer's disease (AD) remains unclear, although diabetes mellitus (DM) is considered a risk factor for AD. Here, we investigated the effects of high glucose on the retromer and defined the dysregulation of mechanisms of amyloid precursor protein (APP) processing and tau phosphorylation. EXPERIMENTAL APPROACH: We used human induced-pluripotent stem cell-derived neuronal differentiated cells and SH-SY5Ys exposed to high glucose to identify the underlying mechanisms. Streptozotocin-induced diabetic mice were used to elucidate whether the retromer contributes to the AD-like pathology. KEY RESULTS: We found that vacuolar protein sorting-associated protein 26a (VPS26a) was decreased in the hippocampus of diabetic mice and high glucose-treated human neuronal cells. High glucose down-regulated VPS26a through ROS/NF-κB/DNA methyltransferase1-mediated promoter hypermethylation. VPS26a recovery blocked retention of APP and cation-independent mannose-6-phosphate receptor in endosomes and promoted transport to the trans-Golgi, which decreased Aß levels, and improved cathepsin D activity, reducing p-tau levels, respectively. Retromer enhancement ameliorated synaptic deficits, astrocyte over-activation, and cognitive impairment in diabetic mice. CONCLUSION AND IMPLICATIONS: In conclusion, VPS26a is a promising candidate for the inhibition of DM-associated AD pathogenesis by modulating APP processing and tau phosphorylation.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Experimental , Proteínas de Transporte Vesicular/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Regulação para Baixo , Glucose , Camundongos , Camundongos Transgênicos , Fosforilação
5.
Nat Commun ; 12(1): 487, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473105

RESUMO

Stress-induced glucocorticoids disturb mitochondrial bioenergetics and dynamics; however, instead of being removed via mitophagy, the damaged mitochondria accumulate. Therefore, we investigate the role of glucocorticoids in mitophagy inhibition and subsequent synaptic defects in hippocampal neurons, SH-SY5Y cells, and ICR mice. First, we observe that glucocorticoids decrease both synaptic density and vesicle recycling due to suppressed mitophagy. Screening data reveal that glucocorticoids downregulate BNIP3-like (BNIP3L)/NIX, resulting in the reduced mitochondrial respiration function and synaptic density. Notably, we find that glucocorticoids direct the glucocorticoid receptor to bind directly to the PGC1α promoter, downregulating its expression and nuclear translocation. PGC1α downregulation selectively decreases NIX-dependent mitophagy. Consistent with these results, NIX enhancer pre-treatment of a corticosterone-exposed mouse elevates mitophagy and synaptic density in hippocampus, improving the outcome of a spatial memory task. In conclusion, glucocorticoids inhibit mitophagy via downregulating NIX and that NIX activation represents a potential target for restoring synapse function.


Assuntos
Glucocorticoides/efeitos adversos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Substâncias Protetoras/metabolismo , Sinapses/metabolismo , Animais , Morte Celular , Corticosterona/farmacologia , Hidrocortisona/farmacologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mitofagia/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteínas Quinases/metabolismo
6.
Cell Death Differ ; 28(1): 184-202, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32704090

RESUMO

Hyperglycemia in diabetes mellitus (DM) patients is a causative factor for amyloidogenesis and induces neuropathological changes, such as impaired neuronal integrity, neurodegeneration, and cognitive impairment. Regulation of mitochondrial calcium influx from the endoplasmic reticulum (ER) is considered a promising strategy for the prevention of mitochondrial ROS (mtROS) accumulation that occurs in the Alzheimer's disease (AD)-associated pathogenesis in DM patients. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A has received an increasing amount of attention as a novel candidate with anti-oxidative and neuroprotective effects in AD. Here, we investigated the effect of urolithin A on high glucose-induced amyloidogenesis caused by mitochondrial calcium dysregulation and mtROS accumulation resulting in neuronal degeneration. We also identified the mechanism related to mitochondria-associated ER membrane (MAM) formation. We found that urolithin A-lowered mitochondrial calcium influx significantly alleviated high glucose-induced mtROS accumulation and expression of amyloid beta (Aß)-producing enzymes, such as amyloid precursor protein (APP) and ß-secretase-1 (BACE1), as well as Aß production. Urolithin A injections in a streptozotocin (STZ)-induced diabetic mouse model alleviated APP and BACE1 expressions, Tau phosphorylation, Aß deposition, and cognitive impairment. In addition, high glucose stimulated MAM formation and transglutaminase type 2 (TGM2) expression. We first discovered that urolithin A significantly reduced high glucose-induced TGM2 expression. In addition, disruption of the AIP-AhR complex was involved in urolithin A-mediated suppression of high glucose-induced TGM2 expression. Markedly, TGM2 silencing inhibited inositol 1, 4, 5-trisphosphate receptor type 1 (IP3R1)-voltage-dependent anion-selective channel protein 1 (VDAC1) interactions and prevented high glucose-induced mitochondrial calcium influx and mtROS accumulation. We also found that urolithin A or TGM2 silencing prevented Aß-induced mitochondrial calcium influx, mtROS accumulation, Tau phosphorylation, and cell death in neuronal cells. In conclusion, we suggest that urolithin A is a promising candidate for the development of therapies to prevent DM-associated AD pathogenesis by reducing TGM2-dependent MAM formation and maintaining mitochondrial calcium and ROS homeostasis.


Assuntos
Doença de Alzheimer/prevenção & controle , Cálcio/metabolismo , Cumarínicos/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Glucose/metabolismo , Mitocôndrias/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
7.
Cell Death Dis ; 11(6): 469, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555166

RESUMO

The gut-brain axis is currently being studied as a therapeutic strategy for neurological diseases, especially Alzheimer's disease (AD). Obesity results in the gut microbiota dysbiosis, which includes butyrate-producing bacteria are reduced. Although sodium butyrate (NaB) has emerged as the potential therapeutic substance in AD, there is a lack of detailed results into what signaling pathways affect amyloidogenesis in AD induced by obesity. Thus, we investigated the regulatory role of NaB on amyloidogenesis in neuronal cells under high cholesterol. In our results, we verified that increased amyloid ß peptide (Aß) accumulation in the brain of obese mice and a reduction in butyrate-producing bacteria due to the gut microbiota dysbiosis induced by obesity. We showed that NaB decreased the expression levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and Aß accumulation induced by high cholesterol in SK-N-MC cells. We demonstrated that NaB was absorbed in cells through sodium-coupled monocarboxylate transporter 1 (SMCT1) and then inhibited high cholesterol-induced Aß accumulation. Subsequently, we also observed that reactive oxygen species (ROS) were overproduced because of increased NADPH oxidase 2 (NOX2) expression under high cholesterol. Meanwhile, NaB decreased NOX2 levels through a reduction of NF-κB activity, which ultimately inhibited Aß accumulation caused by high cholesterol. We demonstrated that NaB increased the expression levels of p21 under high cholesterol, contributing to p21/NRF2 (Nuclear factor erythroid 2-related factor 2) colocalization, which leads to NRF2 stabilization. NRF2 stabilization causes NF-κB inactivation, followed by NOX2 suppression and superoxide dismutase 1 (SOD1) upregulation. Thus, NaB with SOD1 silencing under high cholesterol did not eliminate excessive ROS, and eventually resulted in Aß accumulation. In conclusion, we demonstrated that NaB prevents excessive ROS through NOX2 suppression and SOD1 upregulation by p21/NRF2 pathway, which is critical for inhibiting BACE1-dependent amyloidogenesis in neuronal cells exposed to high cholesterol environment.


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Ácido Butírico/uso terapêutico , NADPH Oxidase 2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/complicações , Superóxido Dismutase-1/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Butírico/farmacologia , Humanos , Camundongos , Espécies Reativas de Oxigênio , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA