RESUMO
Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica de Plantas , Oryza , Prolaminas , Amido , Oryza/genética , Oryza/metabolismo , Prolaminas/metabolismo , Prolaminas/genética , Amido/metabolismo , Edição de Genes/métodos , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Sementes/metabolismo , Glutens/genética , Glutens/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão GênicaRESUMO
The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.
Assuntos
Peróxidos Lipídicos , Oryza , Compostos de Epóxi/metabolismo , Lipoxigenase , Oryza/metabolismo , OxigênioRESUMO
The glutelins are a family of abundant plant proteins comprised of four glutelin subfamilies (GluA, GluB, GluC, and GluD) encoded by 15 genes. In this study, expression of subsets of rice glutelins were suppressed using CRISPR-Cas9 gene-editing technology to generate three transgenic rice variant lines, GluA1, GluB2, and GluC1. Suppression of the targeted glutelin genes was confirmed by SDS-PAGE, Western blot, and q-RT-PCR. Transgenic rice variants GluA1, GluB2, and GluC1 showed reduced amylose and starch content, increased prolamine content, reduced grain weight, and irregularly shaped protein aggregates/protein bodies in mature seeds. Targeted transcriptional profiling of immature seeds was performed with a focus on genes associated with grain quality, starch content, and grain weight, and the results were analyzed using the Pearson correlation test (requiring correlation coefficient absolute value ≥ 0.7 for significance). Significantly up- or down-regulated genes were associated with gene ontology (GO) and KEGG pathway functional annotations related to RNA processing (spliceosomal RNAs, group II catalytic introns, small nucleolar RNAs, microRNAs), as well as protein translation (transfer RNA, ribosomal RNA and other ribosome and translation factors). These results suggest that rice glutelin genes may interact during seed development with genes that regulate synthesis of starch and seed storage proteins and modulate their expression via post-transcriptional and translational mechanisms.
Assuntos
Glutens , Oryza , Glutens/metabolismo , Proteínas de Armazenamento de Sementes/genética , Oryza/metabolismo , Regulação para Baixo/genética , Sistemas CRISPR-Cas , Edição de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Sementes/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
The low-molecular weight glutenin subunit (LMW-GS) composition of wheat (Triticum aestivum) flour has important effects on end-use quality. However, assessing the contributions of each LMW-GS to flour quality remains challenging because of the complex LMW-GS composition and allelic variation among wheat cultivars. Therefore, accurate and reliable determination of LMW-GS alleles in germplasm remains an important challenge for wheat breeding. In this study, we used an optimized reversed-phase HPLC method and proteomics approach comprising 2-D gels coupled with liquid chromatography-tandem mass spectrometry (MS/MS) to discriminate individual LMW-GSs corresponding to alleles encoded by the Glu-A3, Glu-B3, and Glu-D3 loci in the 'Aroona' cultivar and 12 'Aroona' near-isogenic lines (ARILs), which contain unique LMW-GS alleles in the same genetic background. The LMW-GS separation patterns for 'Aroona' and ARILs on chromatograms and 2-D gels were consistent with those from a set of 10 standard wheat cultivars for Glu-3. Furthermore, 12 previously uncharacterized spots in 'Aroona' and ARILs were excised from 2-D gels, digested with chymotrypsin, and subjected to MS/MS. We identified their gene haplotypes and created a 2-D gel map of LMW-GS alleles in the germplasm for breeding and screening for desirable LMW-GS alleles for wheat quality improvement.
Assuntos
Glutens/análise , Glutens/metabolismo , Triticum/metabolismo , Alelos , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional/métodos , Haplótipos , Peso Molecular , Melhoramento Vegetal/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Triticum/química , Triticum/genéticaRESUMO
Soybean lipoxygenase was immobilized on nanoporous rice husk silica particles by adsorption, and enzymatic parameters of the immobilized protein, including the efficiency of substrate binding and catalysis, kinetic and operational stability, and the kinetics of thermal inactivation, were investigated. The maximal adsorption efficiency of soybean lipoxygenase to the silica particles was 50%. The desorption kinetics of soybean lipoxygenase from the silica particles indicate that the silica-immobilized enzyme is more stable in an anionic buffer (sodium phosphate, pH 7.2) than in a cationic buffer (Tris-HCl, pH 7.2). The specific activity of immobilized lipoxygenase was 73% of the specific activity of soluble soybean lipoxygenase at a high concentration of substrate. The catalytic efficiency (kcat/Km) and the Michaelis-Menten constant (Km) of immobilized lipoxygenase were 21% and 49% of kcat/Km and Km of soluble soybean lipoxygenase, respectively, at a low concentration of substrate. The immobilized soybean lipoxygenase was relatively stable, as the enzyme specific activity was >90% of the initial activity after four assay cycles. The thermal stability of the immobilized lipoxygenase was higher than the thermal stability of soluble lipoxygenase, demonstrating 70% and 45% of its optimal specific activity, respectively, after incubation for 30 min at 45 °C. These results demonstrate that adsorption on nanoporous rice husk silica is a simple and rapid method for protein immobilization, and that adsorption may be a useful and facile method for the immobilization of many biologically important proteins of interest.
Assuntos
Enzimas Imobilizadas/química , Glycine max/enzimologia , Lipoxigenase/química , Oryza/química , Dióxido de Silício/química , Proteínas de Soja/química , CatáliseRESUMO
Various mixtures were prepared depending on the mixing ratio of Scutellaria baicalensis hot water extract (SB-HW), and Chrysanthemum morifolium ethanol extract (CM-E) and their anti-inflammatory activity were compared. Among them, SB-HW (80 µg/mL)/CM-E (120 µg/mL) or SB-HW (40 µg/mL)/CM-E (160 µg/mL) significantly inhibited LPS-stimulated NO and IL-6 levels in RAW 264.7 cells. The SB-HW (80 µg/mL)/CM-E (120 µg/mL) mixture, which was determined as active mixture, significantly reduced MUC5AC secretion in PMA and LPS-induced NCI-H292 cells. The active mixture also reduced the production of PGE2 and IL-8 in PMA-induced A549 cells. LC-MS/MS analysis showed that the active mixture was composed of high contents of flavone glycosides, such as baicalin and cynaroside. Western blot analysis indicated that the active mixture suppressed phosphorylation of ERK, JNK, and p38, associating with the inhibition of MAPK signaling. Taken together, our results suggest that the active mixture could be applied as a new anti-inflammatory herbal medicine. ABBREVIATIONS: JNK: c-Jun N-terminal kinases; COPD: chronic obstructive pulmonary disease; CM: Chrysanthemum morifolium; COX-2: cyclooxygenase-2; ERK: extracellular-signal-regulated kinase; IL-6: interleukin-6; IL-8: interleukin-8; IL-12: interleukin-12; LPS: lipopolysaccharide; MAPK: mitogen-activated protein kinase; NO: nitric oxide; NK- κB: nuclear factor kappa B; p38: p38 mitogen-activated protein kinases; PBS: phosphate buffered saline; PMA: phorbol-12-myristate-13-acetate; SB: Scutellaria baicalensis; PGE2: prostaglandin E2; TBST: Tris-buffered saline containing 0.1% Tween 20; TIC: total ion chromatogram; TNF-α: tumor necrosis factor-alpha.
Assuntos
Anti-Inflamatórios/farmacologia , Chrysanthemum/química , Medicina Herbária , Extratos Vegetais/farmacologia , Scutellaria/química , Células A549 , Animais , Anti-Inflamatórios/química , Relação Dose-Resposta a Droga , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Células RAW 264.7RESUMO
Because high-molecular-weight glutenin subunits (HMW-GS) are important contributors to wheat end-use quality, there is a need for high-throughput identification of HMW-GS in wheat genetic resources and breeding lines. We developed an optimized method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to distinguish individual HMW-GS by considering the effects of the alkylating reagent in protein extraction, solvent components, dissolving volume, and matrix II components. Using the optimized method, 18 of 22 HMW-GS were successfully identified in standard wheat cultivars by differences in molecular weights or by their associations with other tightly linked subunits. Interestingly, 1Bx7 subunits were divided into 1Bx7 group 1 and 1Bx7 group 2 proteins with molecular weights of about 82,400 and 83,000 Da, respectively. Cultivars containing the 1Bx7 group 2 proteins were distinguished from those containing 1Bx7OE using well-known DNA markers. HMW-GS 1Ax2* and 1Bx6 and 1By8 and 1By8*, which are difficult to distinguish due to very similar molecular weights, were easily identified using RP-HPLC. To validate the method, HMW-GS from 38 Korean wheat varieties previously evaluated by SDS-PAGE combined with RP-HPLC were analyzed by MALDI-TOF-MS. The optimized MALDI-TOF-MS method will be a rapid, high-throughput tool for selecting lines containing desirable HMW-GS for breeding efforts.
Assuntos
Glutens/análise , Glutens/química , Subunidades Proteicas/análise , Subunidades Proteicas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triticum/química , Peso MolecularRESUMO
Using various chromatographic techniques, 23 triterpene saponins (1-23) were isolated from an ethanol extract of Stauntonia hexaphylla, including two new compounds (12 and 15). Their chemical structures were established by comprehensive spectroscopic methods such as 1D- and 2D-NMR, and HR-ESI-MS, and chemical reactions. The anti-inflammatory activities of the isolated saponins were determined using the nitric oxide (NO) assay. Compound 13 exhibited the greatest inhibitory effect (IC50â¯=â¯0.59⯵M). In addition to NO, compound 13 suppressed the secretion of PGE2, IL-1ß, and IL-6, but not TNF-α, and inhibited the protein expression of iNOS and COX-2 in LPS-activated RAW264.7 cells. The chemical derivatives of the isolated compounds were studied using structure-activity relationships. The results suggested that compound 13 isolated from S. hexaphylla might be useful for treating inflammation. This is the first comprehensive study of saponins from the leaves of S. hexaphylla based on anti-inflammatory extract screening guidelines.
Assuntos
Anti-Inflamatórios/química , Folhas de Planta/química , Ranunculales/química , Saponinas/química , Triterpenos/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Conformação Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Folhas de Planta/metabolismo , Células RAW 264.7 , Ranunculales/metabolismo , Saponinas/isolamento & purificação , Saponinas/farmacologia , Relação Estrutura-AtividadeRESUMO
Rice (Oryza sativa L.) is a primary global food cereal. However, when compared to wheat, rice has poor food processing qualities. Dough that is made from rice flour has low viscoelasticity because rice seed lacks storage proteins that are comparable to gluten protein from wheat. Thus, current research efforts aim to improve rice flour processing qualities through the transgenic expression of viscoelastic proteins in rice seeds. In this study, we characterized the transgenic expression of wheat glutenin subunits in rice seeds. The two genes 1Dx5_KK and 1Dy10_JK, which both encode wheat high-molecular-weight glutenin subunits that confer high dough elasticity, were cloned from Korean wheat cultivars KeumKang and JoKyung, respectively. These genes were inserted into binary vectors under the control of the rice endosperm-specific Glu-B1 promoter and were expressed in the high-amylose Korean rice cultivar Koami (Oryza sativa L.). Individual expression of both glutenin subunits was confirmed by SDS-PAGE and immunoblot analyses performed using T3 generation of transgenic rice seeds. The subcellular localization of 1Dx5_KK and 1Dy10_JK in the rice seed endosperm was confirmed by immunofluorescence analysis, indicating that the wheat glutenin subunits accumulate in protein body-II and novel protein body types in the rice seed. These results contribute to our understanding of engineered seed storage proteins in rice.
Assuntos
Endosperma/metabolismo , Glutens/genética , Glutens/metabolismo , Oryza/genética , Triticum/metabolismo , Clonagem Molecular , Peso Molecular , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Engenharia de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Análise de Sequência de Proteína , Triticum/genéticaRESUMO
To gain insights into the regulatory networks related to anthocyanin biosynthesis and identify key regulatory genes, we performed an integrated analysis of the transcriptome and metabolome in sprouts germinated from three colored potato cultivars: light-red Hongyoung, dark-purple Jayoung, and white Atlantic. We investigated transcriptional and metabolic changes using statistical analyses and gene-metabolite correlation networks. Transcript and metabolite profiles were generated through high-throughput RNA-sequencing data analysis and ultraperformance liquid chromatography quadrupole time-of-flight tandem mass spectrometry, respectively. The identification and quantification of changes in anthocyanin were performed using molecular formula-based mass accuracy and specific features of their MS(2) spectra. Correlation tests of anthocyanin contents and transcriptional changes showed 823 strong correlations (correlation coefficient, R (2)>0.9) between 22 compounds and 119 transcripts categorized into flavonoid metabolism, hormones, transcriptional regulation, and signaling. The connection network of anthocyanins and genes showed a regulatory system involved in the pigmentation of light-red Hongyoung and dark-purple Jayoung potatoes, suggesting that this systemic approach is powerful for investigations into novel genes that are potential targets for the breeding of new valuable potato cultivars.
Assuntos
Redes Reguladoras de Genes , Metaboloma/genética , Pigmentação/genética , Solanum tuberosum/genética , Transcriptoma/genética , Antocianinas/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Molecular imaging can be a breakthrough tool for the investigation of the behavior and ultimate feasibility of transplanted human mesenchymal stem cells (hMSCs) inside the body, and for the development of guidelines and recommendations based on the treatment and evaluation of stem cell therapy for patients. The goals of this study were to evaluate the multilineage differentiation ability of hMSCs expressing an MRI reporter, human ferritin heavy chain (FTH) and to investigate the feasibility of using FTH-based MRI to provide noninvasive imaging of transplanted hMSCs. The transduction of FTH and green fluorescence protein (GFP) did not influence the expression of the mesenchymal stem cell surface markers (CD29+/CD105+/CD34-/CD45-) or the self-renewal marker genes [octamer-binding transcription factor 4 (OCT-4) and SRY (sex determining region Y)-box 2 (Sox-2)], cell viability, migration ability and the release of cytokines [interleukin-5 (IL-5), IL-10, IL-12p70, tumor necrosis factor-α (TNF-α)]. FTH-hMSCs retained the capacity to differentiate into adipogenic, chondrogenic, osteogenic and neurogenic lineages. The transduction of FTH led to a significant enhancement in cellular iron storage capacity and caused hypointensity and a significant increase in R2 * values of FTH-hMSC-collected phantoms and FTH-hMSC-transplanted sites of the brain, as shown by in vitro and in vivo MRI performed at 9.4 T, compared with control hMSCs. This study revealed no differences in biological characteristics between hMSCs and FTH-hMSCs and, therefore, these cells could be used for noninvasive monitoring with MRI during stem cell therapy for brain injury. Our study suggests the use of FTH for in vivo long-term tracking and ultimate fate of hMSCs without alteration of their characteristics and multidifferentiation potential.
Assuntos
Diferenciação Celular , Linhagem da Célula , Ferritinas/metabolismo , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transdução Genética , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ferro/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Nus , Neurônios/citologia , Imagens de FantasmasRESUMO
This study investigates how calcium modulates the properties of dual positional specific maize lipoxygenase-1, including its interaction with substrate, association with subcellular membrane and alteration of product distribution. Bioinformatic analyses identified Asp(38), Glu(127) and Glu(201) as putative calcium binding residues and Leu(37) as a flanking hydrophobic residue also potentially involved in calcium-mediated binding of the enzyme to subcellular membranes. Asp(38) and Leu(37) were shown to be important but not essential for calcium-mediated association of maize lipoxygenase-1 to subcellular membranes in vitro. Kinetic studies demonstrate that catalytic efficiency (Vmax/Km) shows a bell-shaped dependence on log of the molar ratio of substrate to unbound calcium. Calcium also modulates product distribution of the maize lipoxygenase-1 reaction, favoring 13-positional specificity and increasing the relative amount of (E,Z)-isomeric products. The results suggest that calcium regulates the maize lipoxygenase-1 reaction by binding to substrate, and by promoting binding of substrate to enzyme and association of maize lipoxygenase-1 to subcellular membranes.
Assuntos
Cálcio/metabolismo , Lipoxigenase/metabolismo , Zea mays/enzimologia , Sequência de Aminoácidos , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cinética , Lipoxigenase/análise , Lipoxigenase/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Transporte Proteico , Especificidade por Substrato , Zea mays/citologia , Zea mays/genética , Zea mays/metabolismoRESUMO
In the summer of 2012, 1 year after the nuclear accident in March 2011 at the Fukushima Daiichi nuclear power plant, we examined the effects of gamma radiation on rice at a highly contaminated field of Iitate village in Fukushima, Japan. We investigated the morphological and molecular changes on healthy rice seedlings exposed to continuous low-dose gamma radiation up to 4 µSv h(-1), about 80 times higher than natural background level. After exposure to gamma rays, expression profiles of selected genes involved in DNA replication/repair, oxidative stress, photosynthesis, and defense/stress functions were examined by RT-PCR, which revealed their differential expression in leaves in a time-dependent manner over 3 days (6, 12, 24, 48, and 72 h). For example, OsPCNA mRNA rapidly increased at 6, 12, and 24 h, suggesting that rice cells responded to radiation stress by activating a gene involved in DNA repair mechanisms. At 72 h, genes related to the phenylpropanoid pathway (OsPAL2) and cell death (OsPR1oa) were strongly induced, indicating activation of defense/stress responses. We next profiled the transcriptome using a customized rice whole-genome 4×44K DNA microarray at early (6h) and late (72 h) time periods. Low-level gamma radiation differentially regulated rice leaf gene expression (induced 4481 and suppressed 3740 at 6 h and induced 2291 and suppressed 1474 genes at 72 h) by at least 2-fold. Using the highly upregulated and downregulated gene list, MapMan bioinformatics tool generated diagrams of early and late pathways operating in cells responding to gamma ray exposure. An inventory of a large number of gamma radiation-responsive genes provides new information on novel regulatory processes in rice.
Assuntos
Acidente Nuclear de Fukushima , Raios gama/efeitos adversos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Oryza/genética , Folhas de Planta/genética , Plântula/genética , Biologia Computacional , Relação Dose-Resposta à Radiação , Japão , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/efeitos da radiação , Folhas de Planta/efeitos da radiação , Controle de Qualidade , RNA de Plantas/genética , Poluentes Radioativos/toxicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/efeitos da radiaçãoRESUMO
Retinoic acid receptors (RARs), which are involved in retinoic acid signal transduction, are essential for maintaining the differentiated state of epithelial tissues. Mammary glands are skin appendages whose development is initiated through continuous cell-cell interactions between the ectoderm and the adjacent mesenchyme. Considerable progress has been made in elucidating the molecular basis of these interactions in mammary gland formation in mouse embryos, including the network of initiating signals comprising Fgfs, Wnts and Bmps involved in gland positioning and the transcription factors, Tbx3 and Lef1, essential for mammary gland development. Here, we provide evidence that retinoic acid signaling may also be involved in mammary gland development. We documented the expression of gene-encoding enzymes that produce retinoic acid (Raldh2) and enzymes that degrade it (Cyp26a1, Cyp26b1). We also analyzed the expression of RAR-ß, a direct transcriptional target of retinoic acid signaling. Raldh2 and RAR-ß were expressed in E10-E10.5 mouse embryos in somites adjacent to the flank region where mammary buds 2, 3 and 4 develop. These expression patterns overlapped with that of Fgf10, which is known to be required for mammary gland formation. RAR-ß was also expressed in the mammary mesenchyme in E12 mouse embryos; RAR-ß protein was expressed in the mammary epithelium and developing fat pad. Retinoic acid levels in organ cultures of E10.5 mouse embryo flanks were manipulated by adding either retinoic acid or citral, a retinoic acid synthesis inhibitor. Reduced retinoic acid synthesis altered the expression of genes involved in retinoic acid homeostasis and also demonstrated that retinoic acid signaling is required for Tbx3 expression, whereas high levels of retinoic acid signaling inhibited Bmp4 expression and repressed Wnt signaling. The results of the experiments using RNAi against Tbx3 and Wnt10b suggested feedback interactions that regulate retinoic acid homeostasis in mammary gland-forming regions. We produced a molecular model for mammary gland initiation that incorporated retinoic acid signaling.
Assuntos
Glândulas Mamárias Animais/embriologia , Transdução de Sinais , Tretinoína/fisiologia , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/fisiologia , Mesoderma/embriologia , Mesoderma/fisiologia , Camundongos , Modelos Moleculares , Interferência de RNA , Receptores do Ácido Retinoico/fisiologia , Transdução de Sinais/genética , Proteínas com Domínio T/fisiologia , Proteínas Wnt/fisiologiaRESUMO
MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translational repression or RNA degradation. The aberrant expression of miRNAs might be involved in human diseases, including cancer. The expression of miR-206 in estrogen receptor alpha (ER-α)-positive human breast cancer tissues is well known. However, the expression and regulation of miR-206 in the developing mammary gland has not yet been studied. To understand the effects of miR-206 on mammary gland development, we have profiled gene expression in scramble-transfected and miR-206-overexpressing developing mammary buds. The genes that are potentially regulated by miR-206 in the mammary epithelium and/or mesenchyme, such as Tachykinin1 and Gata3, are known to be breast cancer markers. The expression of Wnt, which is involved in gland positioning, and of the transcription factors Tbx3 and Lef1, which are essential for mammary gland development, changes after miR-206 overexpression. Using a mammary bud in vitro culture system, we have demonstrated that miR-206 acts downstream of ER-α during mammary gland growth. Thus, miR-206 might be a novel candidate for morphogenesis during the initiation of mammary gland formation and the regulation of genes related to mammary gland development and breast cancer.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glândulas Mamárias Animais/embriologia , MicroRNAs/biossíntese , Organogênese/fisiologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Receptor alfa de Estrogênio/biossíntese , Receptor alfa de Estrogênio/genética , Feminino , Fator de Transcrição GATA3/biossíntese , Fator de Transcrição GATA3/genética , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/biossíntese , Fator 1 de Ligação ao Facilitador Linfoide/genética , Glândulas Mamárias Animais/citologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/genética , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Taquicininas/biossíntese , Taquicininas/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismoRESUMO
The 'ozone (O3)-responsive transcriptome' behavior in the panicles and grains of rice plant was studied individually through high-throughput oligo-DNA microarray technique. O3 differentially and separately regulated 620 and 130 genes in the panicles and grains. Among the O3-responsive genes, 176 and 444 genes were up- and down-regulated in panicle compared to 24 and 106 genes in grain, respectively. Further mapping revealed that the majority of differentially expressed genes were mainly involved in signaling, hormonal, cell wall, transcription, proteolysis, and defense events. Many previously unknown O3-responsive novel genes were identified. Inventory of 745 O3-responsive genes and their mapping will expand our knowledge on novel regulatory processes in both panicles and grains of rice; and, serve as a resource towards the designing of rice crops for future high-O3world. PURPOSE OF WORK: Tropospheric ozone (O3) severely affects agricultural production worldwide. Present study aims to reveal a detailed O3 responsive gene network in panicle and grains of rice plants through transcriptomics approach. Our results provide an insight into the basis of O3-response in rice plants, and will help to develop suitable rice genotype for future high O3- world.
Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/efeitos dos fármacos , Ozônio/toxicidade , Sementes/efeitos dos fármacos , Estresse Fisiológico , Transcriptoma , Análise em MicrossériesRESUMO
Palate development requires coordinating proper cellular and molecular events in palatogenesis, including the epithelial-mesenchymal transition (EMT), apoptosis, cell proliferation, and cell migration. Zeb1 and Zeb2 regulate epithelial cadherin (E-cadherin) and EMT during organogenesis. While microRNA 200b (miR-200b) is known to be a negative regulator of Zeb1 and Zeb2 in cancer progression, its regulatory effects on Zeb1 and Zeb2 in palatogenesis have not yet been clarified. The aim of this study is to investigate the relationship between the regulators of palatal development, specifically, miR-200b and the Zeb family. Expression of both Zeb1 and Zeb2 was detected in the mesenchyme of the mouse palate, while miR-200b was expressed in the medial edge epithelium. After contact with the palatal shelves, miR-200b was expressed in the palatal epithelial lining and epithelial island around the fusion region but not in the palatal mesenchyme. The function of miR-200b was examined by overexpression via a lentiviral vector in the palatal shelves. Ectopic expression of miR-200b resulted in suppression of the Zeb family, upregulation of E-cadherin, and changes in cell migration and palatal fusion. These results suggest that miR-200b plays crucial roles in cell migration and palatal fusion by regulating Zeb1 and Zeb2 as a noncoding RNA during palate development.
Assuntos
Movimento Celular , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Palato/embriologia , Palato/metabolismo , Proteínas Repressoras/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Células Cultivadas , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/genética , Proteínas Repressoras/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de ZincoRESUMO
Tooth morphogenesis is regulated by sequential and reciprocal interaction between oral epithelium and neural-crest-derived ectomesenchyme. The interaction is controlled by various signal molecules such as bone morphogenetic protein (BMP), Hedgehog, fibroblast growth factor (FGF), and Wnt. Zeb family is known as a transcription factor, which is essential for neural development and neural-crest-derived tissues, whereas the role of the Zeb family in tooth development remains unclear. Therefore, this study aimed to investigate the expression profiles of Zeb1 and Zeb2 during craniofacial development focusing on mesenchyme of palate, hair follicle, and tooth germ from E12.5 to E16.5. In addition, we examined the interaction between Zeb family and BMP4 during tooth development. Both Zeb1 and Zeb2 were expressed at mesenchyme of the palate, hair follicle, and tooth germ throughout the stages. In the case of tooth germ at the cap stage, the expression of Zeb1 and Zeb2 was lost in epithelium-separated dental mesenchyme. However, the expression of Zeb1 and Zeb2 in the dental mesenchyme was recovered by Bmp4 signaling via BMP4-soaked bead and tissue recombination. Our results suggest that Zeb1 and Zeb2, which were mediated by BMP4, play an important role in neural-crest-derived craniofacial organ morphogenesis, such as tooth development.
Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Repressoras/genética , Dente/embriologia , Animais , Embrião de Mamíferos , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Odontogênese/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Dente/metabolismo , Germe de Dente/embriologia , Germe de Dente/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de ZincoRESUMO
Various cellular and molecular events are involved in palatogenesis, including apoptosis, epithelial-mesenchymal transition (EMT), cell proliferation, and cell migration. Smad2 and Snail, which are well-known key mediators of the transforming growth factor beta (Tgf-ß) pathway, play a crucial role in the regulation of palate development. Regulatory effects of microRNA 200b (miR-200b) on Smad2 and Snail in palatogenesis have not yet been elucidated. The aim of this study is to determine the relationship between palate development regulators miR-200b and Tgf-ß-mediated genes. Expression of miR-200b, E-cadherin, Smad2, and Snail was detected in the mesenchyme of the mouse palate, while miR-200b was expressed in the medial edge epithelium (MEE) and palatal mesenchyme. After the contact of palatal shelves, miR-200b was no longer expressed in the mesenchyme around the fusion region. The binding activity of miR-200b to both Smad2 and Snail was examined using a luciferase assay. MiR-200b directly targeted Smad2 and Snail at both cellular and molecular levels. The function of miR-200b was determined by overexpression via a lentiviral vector in the palatal shelves. Ectopic expression of miR-200b resulted in suppression of these Tgf-ß-mediated regulators and changes of apoptosis and cell proliferation in the palatal fusion region. These results suggest that miR-200b plays a crucial role in regulating the Smad2, Snail, and in apoptosis during palatogenesis by acting as a direct non-coding, influencing factor. Furthermore, the molecular interactions between miR-200b and Tgf-ß signaling are important for proper palatogenesis and especially for palate fusion. Elucidating the mechanism of palatogenesis may aid the design of effective gene-based therapies for the treatment of congenital cleft palate.
Assuntos
MicroRNAs/metabolismo , Palato/crescimento & desenvolvimento , Palato/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/genética , Palato/citologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genéticaRESUMO
Sur8/Shoc2 is a scaffold protein that regulates the Ras-extracellular signal-regulated kinase (ERK) pathway. However, the roles of Sur8 in cellular physiologies are poorly understood. In this study, Sur8 was severely repressed in the course of neural progenitor cell (NPC) differentiation in the cerebral cortex of developing rat embryos. Similarly, Sur8 was also critically reduced in cultured NPCs, which were induced differentiation by removal of basic fibroblast growth factor (bFGF). Sur8 regulation occurs at the protein level rather than at the mRNA level as revealed by both in situ hybridization and reverse transcriptase polymerase chain reaction analyses. The role of Sur8 in NPC differentiation was confirmed by lentivirus-mediated Sur8 knockdown, which resulted in increased differentiation, whereas exogenous expression of Sur8 inhibited differentiation. Contrastingly, NPC proliferation was promoted by overexpression, but was suppressed by Sur8 knockdown. The role of Sur8 as an antidifferentiation factor in the developing rat brain was confirmed by an ex vivo embryo culture system combined with the lentivirus-mediated Sur8 knockdown. The numbers and sizes of neurospheres were reduced, but neuronal outgrowth was enhanced by the Sur8 knockdown. The Ras-ERK pathway is involved in Sur8-mediated regulations of differentiation, as the treatment of ERK kinase (MEK) inhibitors blocks the effects of Sur8. The regulations of NPCs' differentiation and proliferation by the Ras-ERK pathway were also shown by the rescues of the effects of bFGF depletion, neuronal differentiation, and antiproliferation by epidermal growth factor. In summary, Sur8 is an antidifferentiation factor that stimulates proliferation for maintenance of self-renewal in NPCs via modulation of the Ras-ERK pathway.