Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 22(12): 3683-3691, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37897433

RESUMO

Among the various cell types that constitute the liver, Kupffer cells (KCs) are responsible for the elimination of gut-derived foreign products. Protein lysine acetylation (Kac) and lactylation (Kla) are dynamic and reversible post-translational modifications, and various global acylome studies have been conducted for liver and liver-derived cells. However, no such studies have been conducted on KCs. In this study, we identified 2198 Kac sites in 925 acetylated proteins and 289 Kla sites in 181 lactylated proteins in immortalized mouse KCs using global acylome technology. The subcellular distributions of proteins with Kac and Kla site modifications differed. Similarly, the specific sequence motifs surrounding acetylated or lactylated lysine residues also showed differences. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to better understand the differentially expressed proteins in the studies by Kac and Kla. In the newly identified Kla, we found K82 lactylation in the high-mobility group box-1 protein in the neutrophil extracellular trap formation category using KEGG enrichment analyses. Here, we report the first proteomic survey of Kac and Kla in KCs.


Assuntos
Células de Kupffer , Lisina , Animais , Camundongos , Lisina/metabolismo , Células de Kupffer/química , Células de Kupffer/metabolismo , Acetilação , Proteômica , Proteoma/análise , Processamento de Proteína Pós-Traducional
2.
Curr Issues Mol Biol ; 44(12): 6247-6256, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36547087

RESUMO

Epigallocatechin 3-O-gallate (EGCG) is a predominant component in green tea with various health benefits. The 67 kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that is overexpressed in various types of cancer; 67LR was identified a cell surface EGCG target that plays a pivotal role in tumor growth, metastasis, and resistance to chemotherapy. However, the plasma concentration of EGCG is limited, and its molecular mechanisms remain unelucidated in colon cancer. In this study, we found that the phosphodiesterase 5 (PDE5) inhibitor, vardenafil (VDN), potentiates EGCG-induced apoptotic cell death in colon cancer cells. The combination of EGCG and VDN induced apoptosis via activation of the endothelial nitric oxide synthase/cyclic guanosine monophosphate/protein kinase Cδ signaling pathway. In conclusion, the PDE5 inhibitor, VDN, may reduce the intracellular PDE5 enzyme activity that potentiates EGCG-induced apoptotic cell death in Caco-2 cells. These results suggest that PDE5 inhibitors can be used to elevate cGMP levels to induce 67LR-mediated, cancer-specific cell death. Therefore, EGCG may be employed as a therapeutic candidate for colon cancer.

3.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669832

RESUMO

Costunolide is a naturally occurring sesquiterpene lactone that demonstrates various therapeutic actions such as anti-oxidative, anti-inflammatory, and anti-cancer properties. Costunolide has recently emerged as a potential anti-cancer agent in various types of cancer, including colon, lung, and breast cancer. However, its mode of action in skin cancer remains unclear. To determine the anti-cancer potential of costunolide in skin cancer, human epidermoid carcinoma cell line A431 was treated with costunolide. A lactate dehydrogenase assay showed that costunolide diminished the viability of A431 cells. Apoptotic cells were detected by annexin V/propidium iodide double staining and Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay assay, and costunolide induced cell apoptosis via activation of caspase-3 as well as induction of poly-ADP ribose polymerase cleavage in A431 cells. In addition, costunolide elevated the level of the pro-apoptotic protein Bax while lowering the levels of anti-apoptotic proteins, including Bcl-2 and Bcl-xL. To address the inhibitory effect of costunolide on cell proliferation and survival, various signaling pathways, including mitogen-activated protein kinases, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NF-κB), and Akt, were investigated. Costunolide activated the p38 and c-Jun N-terminal kinase pathways while suppressing the extracellular signal-regulated kinase (ERK), STAT3, NF-κB, and Akt pathways in A431 cells. Consequently, it was inferred that costunolide suppresses cell proliferation and survival via these signaling pathways. Taken together, our data clearly indicated that costunolide exerts anti-cancer activity in A431 cells by suppressing cell growth via inhibition of proliferation and promotion of apoptosis. Therefore, it may be employed as a potentially tumor-specific candidate in skin cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Neoplasias Cutâneas/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069970

RESUMO

Prostate cancer (PCa) is the second most leading cause of death in males. Our previous studies have demonstrated that δ-catenin plays an important role in prostate cancer progression. However, the molecular mechanism underlying the regulation of δ-catenin has not been fully explored yet. In the present study, we found that δ-catenin could induce phosphorylation of p21Waf and stabilize p21 in the cytoplasm, thus blocking its nuclear accumulation for the first time. We also found that δ-catenin could regulate the interaction between AKT and p21, leading to phosphorylation of p21 at Thr-145 residue. Finally, EGF was found to be a key factor upstream of AKT/δ-catenin/p21 for promoting proliferation and metastasis in prostate cancer. Our findings provide new insights into molecular controls of EGF and the development of potential therapeutics targeting δ-catenin to control prostate cancer progression.


Assuntos
Cateninas/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transporte Ativo do Núcleo Celular , Sítios de Ligação/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/química , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Ligantes , Masculino , Modelos Biológicos , Mutagênese Sítio-Dirigida , Invasividade Neoplásica/patologia , Invasividade Neoplásica/fisiopatologia , Células PC-3 , Fosforilação , Neoplasias da Próstata/genética , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/química , Transdução de Sinais , Treonina/química , delta Catenina
5.
J Nat Prod ; 83(3): 684-692, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32118424

RESUMO

Opuntia humifusa, known as the eastern prickly pear cactus and locally called "Cheonnyuncho" in Korea, is cultivated widely on Jeju Island, Korea. Phytochemical analysis of the methanolic extract of the cladodes of O. humifusa, for which previous research is relatively limited, was performed under the guidance of LC/MS-based analysis. As a result, one new megastigmane (1) and four new megastigmane glucosides (2-5) were isolated along with 18 known compounds (6-23). The structures of the new compounds were established by 1D and 2D NMR and HRESIMS, and their absolute configurations were established by chemical reactions, quantum chemical electronic circular dichroism calculations, and DP4+ analysis using the gauge-including atomic orbital NMR chemical shift calculations as well as the application of Snatzke's method. The isolated compounds (1-23) were tested for NO production inhibition in lipopolysaccharide (LPS)-induced RAW 264.7 cells to investigate their anti-inflammatory effects. Compounds 10 and 11 exhibited significant inhibitory effects on LPS-induced NO production in a dose-dependent manner. The potential mechanistic pathway of 10 and 11 was also investigated using Western blotting, indicating that compounds 10 and 11 inhibit NO through iNOS expression.


Assuntos
Antioxidantes/farmacologia , Cicloexanonas/farmacologia , Glucosídeos/farmacologia , Norisoprenoides/farmacologia , Opuntia/química , Animais , Antioxidantes/isolamento & purificação , Cicloexanonas/isolamento & purificação , Glucosídeos/isolamento & purificação , Camundongos , Estrutura Molecular , Óxido Nítrico , Norisoprenoides/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais , Células RAW 264.7 , República da Coreia
6.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32187984

RESUMO

Various herbal extracts containing luteolin-7-O-glucuronide (L7Gn) have been traditionally used to treat inflammatory diseases. However, systemic studies aimed at elucidating the anti-inflammatory and anti-oxidative mechanisms of L7Gn in macrophages are insufficient. Herein, the anti-inflammatory and anti-oxidative effects of L7Gn and their underlying mechanisms of action in macrophages were explored. L7Gn inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase (iNOS) in a dose-dependent manner. The mRNA expression of inflammatory mediators, including cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α (TNF-α), was inhibited by L7Gn treatment. This suppression was mediated through transforming growth factor beta-activated kinase 1 (TAK1) inhibition that leads to reduced activation of nuclear factor-κB (NF-κB), p38, and c-Jun N-terminal kinase (JNK). L7Gn also enhanced the radical scavenging effect and increased the expression of anti-oxidative regulators, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1), by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activation. These results indicate that L7Gn exhibits anti-inflammatory and anti-oxidative properties in LPS-stimulated murine macrophages, suggesting that L7Gn may be a suitable candidate to treat severe inflammation and oxidative stress.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/efeitos adversos , Luteolina/antagonistas & inibidores , MAP Quinase Quinase Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Luteolina/química , Luteolina/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
7.
Molecules ; 25(6)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183436

RESUMO

Aucklandia lappa Decne., known as "Mok-hyang" in Korea, has been used for the alleviation of abdominal pain, vomiting, diarrhea, and stress gastric ulcers in traditional oriental medicine. We investigated the anti-inflammatory and antioxidative effects of the ethanol extract of Aucklandia lappa Decne. (ALDE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. ALDE significantly inhibited the LPS-induced nitric oxide (NO) production and reduced inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. The production of other proinflammatory mediators, including COX-2, interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α, was reduced by ALDE in LPS-stimulated RAW 264.7 cells. The mechanism underlying the anti-inflammatory effects of ALDE was elucidated to be the suppression of LPS-induced nuclear translocation of p65, followed by the degradation of IκB and the inhibition of the phosphorylation of mitogen-activated protein kinases (MAPK). In addition, ALDE showed enhanced radical scavenging activity. The antioxidant effect of ALDE was caused by the enhanced expression of heme oxygenase (HO-1) via stabilization of the expression of the nuclear transcription factor E2-related factor 2 (Nrf2) pathway. Collectively, these results indicated that ALDE not only exerts anti-inflammatory effects via the suppression of the NF-κB and MAPK pathways but also has an antioxidative effect through the activation of the Nrf2/HO-1 pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Saussurea/química , Animais , Antioxidantes/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
8.
Molecules ; 24(14)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336599

RESUMO

Lignans are known to be an important class of phenylpropanoid secondary metabolites. In the course of our studies on the chemodiversity of lignans, the necessity arose to develop a method for the fast detection and identification of bioactive lignan subclasses. In this study, we detected 10 lignan derivatives of different extracts of F. viridissima by UHPLC-ESI-QTOF-MS. Lignan glycosides (1 and 2), lignans (3 and 4), and lignan dimers (5-10) were identified by analysis of their exact masses and MSe spectra along with the characteristic mass fragmentation patterns and molecular formulas. We further investigated NO inhibitory effects of F. viridissima fractions and their major lignan derivatives to evaluate those anti-inflammatory effects. The methylene chloride fraction of F. viridissima as well as compounds 8 and 10 showed potent dose-dependent NO inhibitory effects on RAW 264.7 cells. Corresponding to the NO inhibition by compounds 8 and 10, lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression was notably reduced by both compounds. Our combined data with the bioactive results and the component analysis by UHPLC-ESI-QTOF-MS suggest that the methylene chloride fraction of F. viridissima roots could be potential anti-inflammatory agents and these are related to major lignans including dimeric dibenzylbutyrolactone lignans.


Assuntos
Forsythia/química , Lignanas/química , Lignanas/farmacologia , Óxido Nítrico/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Raízes de Plantas/química , Células RAW 264.7 , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Molecules ; 23(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029475

RESUMO

We evaluated the antioxidant and antibacterial activity of hexnane, ethyl acetate, acetone, methanol, ethanol, and water extracts of the Quercus acuta leaf. The antioxidant properties were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, reducing power, and total phenolic content. Antibacterial activity was assessed against general infectious pathogens, including antibiotic-resistant clinical isolates. The methanolic extract showed the highest DPPH radical scavenging activity and total phenolic content, while the reducing power was the highest in the water extract. The ethyl acetate extract showed the best antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Additionally, it displayed antibacterial activity against Staphylococcus aureus KCTC1928, Micrococcus luteus ATCC 9341, Salmonella typhimurium KCTC 1925, Escherichia coli KCTC 1923, and eight MRSA strains. These results present basic information for the possible uses of the ethanolic and ethyl acetate extracts from Q. acuta leaf in the treatment of diseases that are caused by oxidative imbalance and antibiotic-resistant bacterial infections. Six active compounds, including vitamin E, which are known to possess antioxidant and antibacterial activity, were identified from the extracts. To the best of our knowledge, this is the first study that reports the chemical profiling and antibacterial effects of the various QA leaf extracts, suggesting their potential use in food therapy or alternative medicine.


Assuntos
Extratos Vegetais/química , Extratos Vegetais/farmacologia , Quercus/química , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Fenóis/química , Fenóis/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Staphylococcus aureus/efeitos dos fármacos
10.
Biochim Biophys Acta ; 1863(9): 2311-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27316454

RESUMO

Ubiquitination, a post-translational modification, involves the covalent attachment of ubiquitin to the target protein. The ubiquitin-proteasome pathway and the endosome-lysosome pathway control the degradation of the majority of eukaryotic proteins. Our previous study illustrated that δ-catenin ubiquitination occurs in a glycogen synthase kinase-3 (GSK-3) phosphorylation-dependent manner. However, the molecular mechanism of δ-catenin ubiquitination is still unknown. Here, we show that the lysine residues required for ubiquitination are located mainly in the C-terminal portion of δ-catenin. In addition, we provide evidence that ß-TrCP-1 interacts with δ-catenin and functions as an E3 ligase, mediating δ-catenin ubiquitin-proteasome degradation. Furthermore, we prove that both the ubiquitin-proteasome pathway and the lysosome degradation pathway are involved in δ-catenin degradation. Our novel findings on the mechanism of δ-catenin ubiquitination will add a new perspective to δ-catenin degradation and the effects of δ-catenin on E-cadherin involved in epithelial cell-cell adhesion, which is implicated in prostate cancer progression.


Assuntos
Cateninas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Sequência de Aminoácidos , Cateninas/química , Linhagem Celular , Cromatografia Líquida , Regulação para Baixo , Humanos , Lisina/metabolismo , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo , delta Catenina
11.
Int J Mol Sci ; 18(9)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862656

RESUMO

Bromopropane (BP) compounds, including 1-bromopropane, 2-bromopropane, and 1,2-dibromopropane, are used in industry for various purposes, and their deleterious effects on human health are becoming known. In this study, we examined the effects of BP compounds on the stemness of colorectal cancer cells. At low, non-cytotoxic concentrations, BP compounds significantly increased spheroid formation in CSC221, DLD1, Caco2, and HT29 cells. In addition, the levels of cancer stem cell markers, such as aldehyde dehydrogenase-1, cluster of differentiation 133 (CD133), CD44, Lgr5, Musashi-1, Ephrin receptor, and Bmi-1 increased after exposure to BP compounds. BP compounds increased the transcriptional activity of the TOPflash and glioma-associated oncogene homolog zinc finger protein (Gli) promoters in reporter assays and increased the expression of Gli-1, Gli-2, Smoothened (SMO), and ß-catenin by RT-PCR. These results demonstrate for the first time that BP compounds have the potential to promote cancer stemness.


Assuntos
Carcinógenos/farmacologia , Neoplasias Colorretais/induzido quimicamente , Células-Tronco Neoplásicas/efeitos dos fármacos , Células CACO-2 , Carcinógenos/toxicidade , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Hidrocarbonetos Bromados/farmacologia , Hidrocarbonetos Bromados/toxicidade , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia
12.
Neoplasia ; 51: 100991, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38507887

RESUMO

Dihydroartemisinin (DHA) exerts an anti-tumor effect in multiple cancers, however, the molecular mechanism of DHA and whether DHA facilitates the anti-tumor efficacy of cisplatin in non-small cell lung cancer (NSCLC) are unclear. Here, we found that DHA potentiated the anti-tumor effects of cisplatin in NSCLC cells by stimulating reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress, C-Jun-amino-terminal kinase (JNK) and p38 MAPK signaling pathways both in vitro and in vivo. Of note, we demonstrated for the first time that DHA inhibits prostaglandin G/H synthase 1 (PTGS1) expression, resulting in enhanced ROS production. Importantly, silencing PTGS1 sensitized DHA-induced cell death by increasing ROS production and activating ER-stress, JNK and p38 MAPK signaling pathways. In summary, our findings provided new experimental basis and therapeutic prospect for the combined therapy with DHA and cisplatin in some NSCLC patients.


Assuntos
Artemisininas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Espécies Reativas de Oxigênio , Humanos , Apoptose , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Morte Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Ciclo-Oxigenase 1/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Inibidores de Ciclo-Oxigenase/farmacologia
13.
J Med Chem ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913701

RESUMO

UC and ALI are inflammatory diseases with limited treatment in the clinic. Herein, fragment-based anti-inflammatory agent designs were carried out deriving from cyclohexylamine/cyclobutylamine and several fragments from anti-inflammatory agents in our lab. AF-45 (IC50 = 0.53/0.60 µM on IL-6/TNF-α in THP-1 macrophages) was identified as the optimal molecule using ELISA and MTT assays from the 33 synthesized compounds. Through mechanistic studies and a systematic target search process, AF-45 was found to block the NF-κB/MAPK pathway and target IRAK4, a promising target for inflammation and autoimmune diseases. The selectivity of AF-45 targeting IRAK4 was validated by comparing its effects on other kinase/nonkinase proteins. In vivo, AF-45 exhibited a good therapeutic effect on UC and ALI, and favorable PK proprieties. Since there are currently no clinical or preclinical trials for IRAK4 inhibitors to treat UC and ALI, AF-45 provides a new lead compound or candidate targeting IRAK4 for the treatment of these diseases.

14.
Eur J Med Chem ; 272: 116487, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38759452

RESUMO

Acute lung injury (ALI) and inflammatory bowel disease (IBD) are common inflammatory illnesses that seriously affect people's health. Herein, a series of 4-hydroxylcoumarin (4-HC) derivatives were designed and synthesized. The inhibitory effects of these compounds on LPS-induced interleukin-6 (IL-6) release from J774A.1 cells were then screened via ELISA assay, compound B8 showed 3 times more active than the lead compound 4-HC. The most active compound B8 had the IC50 values of 4.57 µM and 6.51 µM for IL-6 release on mouse cells J774A.1 and human cells THP-1, respectively. Furthermore, we also found that B8 could act on the MAPK pathway. Based on the target prediction results of computer virtual docking, kinase inhibitory assay was carried out, and it revealed that targeting IRAK1 was a key mechanism for B8 to exert anti-inflammatory activity. Moreover, B8 exerted a good therapeutic effect on the dextran sulfate sodium (DSS)-induced colitis model and liposaccharide (LPS)-induced ALI mouse models. The acute toxicity experiments indicated that high-dose B8 caused no adverse reactions in mice, confirming its safety in vivo. Additionally, the preliminary pharmacokinetic (PK) parameters of B8 in SD rats were also examined, revealing a bioavailability (F) of 28.72 %. In conclusion, B8 is a potential candidate of drug for the treatment of ALI and colitis.


Assuntos
4-Hidroxicumarinas , Lesão Pulmonar Aguda , Colite , Desenho de Fármacos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Colite/tratamento farmacológico , Colite/induzido quimicamente , Camundongos , Humanos , Relação Estrutura-Atividade , 4-Hidroxicumarinas/farmacologia , 4-Hidroxicumarinas/química , 4-Hidroxicumarinas/síntese química , Estrutura Molecular , Sulfato de Dextrana , Masculino , Relação Dose-Resposta a Droga , Ratos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Linhagem Celular
15.
Eur J Med Chem ; 268: 116252, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422703

RESUMO

The modification based on natural products is a practical way to find anti-inflammatory drugs. In this study, 26 osthole derivatives were synthesized, and their anti-inflammatory properties were evaluated. The preliminary activity study revealed that most osthole derivatives could effectively inhibit inflammatory cytokines IL-6 secretion in LPS stimulated mouse macrophages J774A.1. Compound 7m exhibited the most effective anti-inflammatory activity (RAW264.7 IL-6 IC50: 4.57 µM, 32 times more active than osthole) in vitro with no significant influence on cell proliferation. Additionally, the mechanistic analysis demonstrated that compound 7m could block MAPK signal transduction by inhibiting the phosphorylation of JNK and p38, thereby inhibiting the release of inflammatory cytokines. Moreover, in vivo functional investigations revealed that 7m could substantially reduce DSS-induced ulcerative colitis and LPS-induced acute lung injury, with good therapeutic effects. The pharmacokinetics and acute toxicity experiments proved the safety and reliability of 7min vivo. Overall, Compound 7m could further be studied as potential anti-inflammatory candidate.


Assuntos
Lesão Pulmonar Aguda , Colite Ulcerativa , Colite , Cumarínicos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Interleucina-6 , Reprodutibilidade dos Testes , Anti-Inflamatórios/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas , NF-kappa B , Camundongos Endogâmicos C57BL , Colite/tratamento farmacológico
16.
iScience ; 26(7): 107251, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456830

RESUMO

[This corrects the article DOI: 10.1016/j.isci.2023.106872.].

17.
iScience ; 26(6): 106872, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37260750

RESUMO

The specificity of CRISPR-Cas9 in response to particular pathological stimuli remains largely unexplored. Hence, we designed an inflammation-inducible CRISPR-Cas9 system by grafting a sequence that binds with NF-κB to the CRISPR-Cas9 framework, termed NBS-CRISPR. The genetic scissor function of this developed genome-editing tool is activated on encountering an inflammatory attack and is inactivated or minimized in non-inflammation conditions. Furthermore, we employed this platform to reverse inflammatory conditions by targeting the MyD88 gene, a crucial player in the NF-κB signaling pathway, and achieved impressive therapeutic effects. Finally, during inflammation, P65 (RELA) can translocate to the nucleus from the cytoplasm. Herein, to avoid Cas9 leaky DNA cleavage activity i, we constructed an NBS-P65-CRISPR system expressing the Cas9-p65 fusion protein. Our inflammation inducible Cas9-mediated genome editing strategy provides new perspectives and avenues for pathological gene interrogation.

18.
J Control Release ; 356: 507-524, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907564

RESUMO

We developed an orally delivered nanoemulsion that induces cancer immunization. It consists of tumor antigen-loaded nano-vesicles carrying the potent invariant natural killer T-cell (iNKT) activator α-galactosylceramide (α-GalCer), to trigger cancer immunity by effectively activating both innate and adaptive immunity. It was validated that adding bile salts to the system boosted intestinal lymphatic transport as well as the oral bioavailability of ovalbumin (OVA) via the chylomicron pathway. To increase intestinal permeability further and amplify the antitumor responses, an ionic complex of cationic lipid 1,2-dioleyl-3-trimethylammonium propane (DTP) with sodium deoxycholate (DA) (DDP) and α-GalCer were anchored onto the outer oil layer to form OVA-NE#3. As expected, OVA-NE#3 exhibited tremendously improved intestinal cell permeability as well as enhanced delivery to mesenteric lymph nodes (MLNs). Subsequent activation of dendritic cells and iNKTs, in MLNs were also observed. Tumor growth in OVA-expressing mice with melanoma was more strongly suppressed (by 71%) after oral administration of OVA-NE#3 than in untreated controls, confirming the strong immune response induced by the system. The serum levels of OVA-specific IgG1 and IgG2a were 3.52- and 6.14-fold higher than in controls. Treating OVA-NE#3 increased the numbers of tumor-infiltrating lymphocytes, including cytotoxic T-cell and M1-like macrophage. Antigen- and α-GalCer-associated enrichment of dendritic cells and iNKTs in tumor tissues also increased after OVA-NE#3 treatment. These observations indicate that our system induces both cellular and humoral immunity by targeting the oral lymphatic system. It may offer a promising oral anti-cancer vaccination strategy that involves the induction of systemic anti-cancer immunization.


Assuntos
Antígenos de Neoplasias , Melanoma , Camundongos , Animais , Ovalbumina , Imunização , Camundongos Endogâmicos C57BL
19.
Antioxidants (Basel) ; 12(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37891872

RESUMO

Ehretia tinifolia (E. tinifolia) L., an evergreen tree with substantial biological activity, including antioxidant and anti-inflammatory effects, has been used in many herbal and traditional medicines. To elucidate its antioxidant and anti-inflammatory activity and the underlying mechanisms, we applied a methanol extract of E. tinifolia (ETME) to lipopolysaccharide (LPS)-stimulated mouse immortalized Kupffer cells. ETME suppressed the LPS-induced increase in nitric oxide, a mediator for oxidative stress and inflammation, and restored LPS-mediated depletion of total glutathione level by stabilizing antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) and the subsequent increase in heme oxygenase-1 levels. Furthermore, ETME inhibited the LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. The inhibitory effects of ETME on pro-inflammatory responses were regulated by ETME-mediated dephosphorylation of mitogen-activated protein kinases (MAPKs: p38, p44/p42, and stress-associated protein kinase/c-Jun N-terminal kinase) and inhibition of nuclear localization of nuclear factor kappa B (NF-κB). These results suggest that ETME is a possible candidate for protecting Kupffer cells from LPS-mediated oxidative stress and excessive inflammatory responses by activating antioxidant Nrf2/HO-1 and inhibiting pro-inflammatory NF-κB and MAPKs, respectively.

20.
Antioxidants (Basel) ; 12(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136148

RESUMO

Filamentous fungi produce several beneficial secondary metabolites, including bioactive compounds, food additives, and biofuels. Trichoderma, which is a teleomorphic Hypocrea that falls under the taxonomic groups Ascomycota and Dikarya, is an extensively studied fungal genus. In an ongoing study that seeks to discover bioactive natural products, we investigated potential bioactive metabolites from the methanolic extract of cultured Trichoderma gamsii. Using liquid chromatography-mass spectrometry (LC-MS), one major compound was isolated and structurally identified as 6-pentyl-α-pyrone (6PP) based on nuclear magnetic resonance data and LC-MS analysis. To determine its antioxidant and anti-inflammatory activity, as well as the underlying mechanisms, we treated lipopolysaccharide (LPS)-stimulated Raw264.7 mouse macrophages with 6PP. We found that 6PP suppresses LPS-induced increase in the levels of nitric oxide, a mediator of oxidative stress and inflammation, and restores LPS-mediated depletion of total glutathione by stabilizing nuclear factor erythroid 2-related factor 2 (Nrf2), an antioxidative factor, and elevating heme oxygenase-1 levels. Furthermore, 6PP inhibited LPS-induced production of proinflammatory cytokines, which are, at least in part, regulated by heme oxygenase-1 (HO-1). 6PP suppressed proinflammatory responses by inhibiting the nuclear localization of nuclear factor kappa B (NF-κB), as well as by dephosphorylating the mitogen-activated protein kinases (MAPKs). These results indicate that 6PP can protect macrophages against oxidative stress and LPS-induced excessive inflammatory responses by activating the Nrf2/HO-1 pathway while inhibiting the proinflammatory, NF-κB, and MAPK pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA