Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(2): 330-340, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087231

RESUMO

Intravital confocal microscopy and two-photon microscopy are powerful tools to explore the dynamic behavior of immune cells in mouse lymph nodes (LNs), with penetration depth of ~100 and ~300 µm, respectively. Here, we used intravital three-photon microscopy to visualize the popliteal LN through its entire depth (600-900 µm). We determined the laser average power and pulse energy that caused measurable perturbation in lymphocyte migration. Long-wavelength three-photon imaging within permissible parameters was able to image the entire LN vasculature in vivo and measure CD8+ T cells and CD4+ T cell motility in the T cell zone over the entire depth of the LN. We observed that the motility of naive CD4+ T cells in the T cell zone during lipopolysaccharide-induced inflammation was dependent on depth. As such, intravital three-photon microscopy had the potential to examine immune cell behavior in the deeper regions of the LN in vivo.


Assuntos
Microscopia Intravital/métodos , Linfonodos/citologia , Microscopia Confocal/métodos , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Movimento Celular/fisiologia , Rastreamento de Células/métodos , Camundongos
2.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30783017

RESUMO

A lacteal is a blunt-ended, long, tube-like lymphatic vessel located in the center of each intestinal villus that provides a unique route for drainage of absorbed lipids from the small intestine. However, key regulators for maintaining lacteal integrity are poorly understood. Here, we explore whether and how the gut microbiota regulates lacteal integrity. Germ depletion by antibiotic treatment triggers lacteal regression during adulthood and delays lacteal maturation during the postnatal period. In accordance with compromised lipid absorption, the button-like junction between lymphatic endothelial cells, which is ultrastructurally open to permit free entry of dietary lipids into lacteals, is significantly reduced in lacteals of germ-depleted mice. Lacteal defects are also found in germ-free mice, but conventionalization of germ-free mice leads to normalization of lacteals. Mechanistically, VEGF-C secreted from villus macrophages upon MyD88-dependent recognition of microbes and their products is a main factor in lacteal integrity. Collectively, we conclude that the gut microbiota is a crucial regulator for lacteal integrity by endowing its unique microenvironment and regulating villus macrophages in small intestine.


Assuntos
Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Macrófagos/metabolismo , Fator C de Crescimento do Endotélio Vascular/biossíntese , Fatores Etários , Animais , Transporte Biológico , Biomarcadores , Receptor 1 de Quimiocina CX3C/metabolismo , Imunofluorescência , Absorção Intestinal , Mucosa Intestinal/citologia , Mucosa Intestinal/ultraestrutura , Metabolismo dos Lipídeos , Camundongos , Microvasos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais
3.
Eur Respir J ; 53(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30635296

RESUMO

The lung is highly vulnerable during sepsis, yet its functional deterioration accompanied by disturbances in the pulmonary microcirculation is poorly understood. This study aimed to investigate how the pulmonary microcirculation is distorted in sepsis-induced acute lung injury (ALI) and reveal the underlying cellular pathophysiologic mechanism.Using a custom-made intravital lung microscopic imaging system in a murine model of sepsis-induced ALI, we achieved direct real-time visualisation of the pulmonary microcirculation and circulating cells in vivo We derived the functional capillary ratio (FCR) as a quantitative parameter for assessing the fraction of functional microvasculature in the pulmonary microcirculation and dead space.We identified that the FCR rapidly decreases in the early stage of sepsis-induced ALI. The intravital imaging revealed that this decrease resulted from the generation of dead space, which was induced by prolonged neutrophil entrapment within the capillaries. We further showed that the neutrophils had an extended sequestration time and an arrest-like dynamic behaviour, both of which triggered neutrophil aggregates inside the capillaries and arterioles. Finally, we found that Mac-1 (CD11b/CD18) was upregulated in the sequestered neutrophils and that a Mac-1 inhibitor restored the FCR and improved hypoxaemia.Using the intravital lung imaging system, we observed that Mac-1-upregulated neutrophil aggregates led to the generation of dead space in the pulmonary microcirculation that was recovered by a Mac-1 inhibitor in sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , Pulmão/irrigação sanguínea , Antígeno de Macrófago 1/imunologia , Neutrófilos/citologia , Sepse/complicações , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Anticorpos Monoclonais/farmacologia , Capilares , Modelos Animais de Doenças , Pulmão/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Microscopia de Vídeo , Sepse/tratamento farmacológico , Sepse/patologia
4.
J Vis Exp ; (179)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35098941

RESUMO

Multiphoton microscopy techniques, such as two-photon microscopy (2PM) and three-photon microscopy (3PM), are powerful tools for deep-tissue in vivo imaging with subcellular resolution. 3PM has two major advantages for deep-tissue imaging over 2PM that has been widely used in biology laboratories: (i) longer attenuation length in scattering tissues by employing ~1,300 nm or ~1,700 nm excitation laser; (ii) less background fluorescence generation due to higher-order nonlinear excitation. As a result, 3PM allows high-contrast structural and functional imaging deep within scattering tissues such as intact mouse brain from the cortical layers to the hippocampus and the entire forebrain of adult zebrafish. Today, laser sources suitable for 3PM are commercially available, enabling the conversion of an existing two-photon (2P) imaging system to a three-photon (3P) system. Additionally, multiple commercial 3P microscopes are available, which makes this technique readily available to biology research laboratories. This paper shows the optimization of a typical 3PM setup, particularly targeting biology groups that already have a 2P setup, and demonstrates intravital 3D imaging in intact mouse and adult zebrafish brains. This protocol covers the full experimental procedure of 3P imaging, including microscope alignment, prechirping of ~1,300 and ~1,700 nm laser pulses, animal preparation, and intravital 3P fluorescence imaging deep in adult zebrafish and mouse brains.


Assuntos
Fótons , Peixe-Zebra , Animais , Encéfalo/diagnóstico por imagem , Lasers , Camundongos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos
5.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34187874

RESUMO

High endothelial venules (HEVs) effectively recruit circulating lymphocytes from the blood to lymph nodes. HEVs have endothelial cells (ECs) and perivascular sheaths consisting of fibroblastic reticular cells (FRCs). Yet, post-luminal lymphocyte migration steps are not well elucidated. Herein, we performed intravital imaging to investigate post-luminal T- and B-cell migration in popliteal lymph node, consisting of trans-EC migration, crawling in the perivascular channel (a narrow space between ECs and FRCs) and trans-FRC migration. The post-luminal migration of T cells occurred in a PNAd-dependent manner. Remarkably, we found hot spots for the trans-EC and trans-FRC migration of T- and B cells. Interestingly, T- and B cells preferentially shared trans-FRC migration hot spots but not trans-EC migration hot spots. Furthermore, the trans-FRC T-cell migration was confined to fewer sites than trans-EC T-cell migration, and trans-FRC migration of T- and B cells preferentially occurred at FRCs covered by CD11c+ dendritic cells in HEVs. These results suggest that HEV ECs and FRCs with perivascular DCs delicately regulate T- and B-cell entry into peripheral lymph nodes.


Assuntos
Linfócitos B/metabolismo , Linfócitos T/metabolismo , Vênulas/imunologia , Animais , Microscopia Intravital , Linfonodos/imunologia , Camundongos , Migração Transendotelial e Transepitelial
7.
Nat Commun ; 11(1): 4102, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796823

RESUMO

Emerging evidence suggests that intestinal stromal cells (IntSCs) play essential roles in maintaining intestinal homeostasis. However, the extent of heterogeneity within the villi stromal compartment and how IntSCs regulate the structure and function of specialized intestinal lymphatic capillary called lacteal remain elusive. Here we show that selective hyperactivation or depletion of YAP/TAZ in PDGFRß+ IntSCs leads to lacteal sprouting or regression with junctional disintegration and impaired dietary fat uptake. Indeed, mechanical or osmotic stress regulates IntSC secretion of VEGF-C mediated by YAP/TAZ. Single-cell RNA sequencing delineated novel subtypes of villi fibroblasts that upregulate Vegfc upon YAP/TAZ activation. These populations of fibroblasts were distributed in proximity to lacteal, suggesting that they constitute a peri-lacteal microenvironment. Our findings demonstrate the heterogeneity of IntSCs and reveal that distinct subsets of villi fibroblasts regulate lacteal integrity through YAP/TAZ-induced VEGF-C secretion, providing new insights into the dynamic regulatory mechanisms behind lymphangiogenesis and lymphatic remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Fatores de Transcrição/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática , Fibroblastos/ultraestrutura , Citometria de Fluxo , Imunofluorescência , Hibridização in Situ Fluorescente , Mucosa Intestinal/ultraestrutura , Linfangiogênese/genética , Linfangiogênese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fator C de Crescimento do Endotélio Vascular/genética , Proteínas de Sinalização YAP
8.
Nat Commun ; 11(1): 2980, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532986

RESUMO

Proper storage of excessive dietary fat into subcutaneous adipose tissue (SAT) prevents ectopic lipid deposition-induced insulin resistance, yet the underlying mechanism remains unclear. Here, we identify angiopoietin-2 (Angpt2)-integrin α5ß1 signaling as an inducer of fat uptake specifically in SAT. Adipocyte-specific deletion of Angpt2 markedly reduced fatty acid uptake and storage in SAT, leading to ectopic lipid accumulation in glucose-consuming organs including skeletal muscle and liver and to systemic insulin resistance. Mechanistically, Angpt2 activated integrin α5ß1 signaling in the endothelium and triggered fatty acid transport via CD36 and FATP3 into SAT. Genetic or pharmacological inhibition of the endothelial integrin α5ß1 recapitulated adipocyte-specific Angpt2 knockout phenotypes. Our findings demonstrate the critical roles of Angpt2-integrin α5ß1 signaling in SAT endothelium in regulating whole-body fat distribution for metabolic health and highlight adipocyte-endothelial crosstalk as a potential target for prevention of ectopic lipid deposition-induced lipotoxicity and insulin resistance.


Assuntos
Angiopoietina-2/metabolismo , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Integrina alfa5beta1/metabolismo , Metabolismo dos Lipídeos/fisiologia , Gordura Subcutânea/metabolismo , Adulto , Angiopoietina-2/genética , Animais , Células Cultivadas , Feminino , Perfilação da Expressão Gênica/métodos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Resistência à Insulina/genética , Integrina alfa5beta1/genética , Metabolismo dos Lipídeos/genética , Lipídeos/análise , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Transdução de Sinais/genética
9.
Biomed Opt Express ; 10(6): 2719-2729, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259046

RESUMO

In vivo, longitudinal observation of tumorigenesis in a live mouse model over an extended time period has been actively pursued to obtain a better understanding of the cellular and molecular mechanism in a highly complex tumor microenvironment. However, common intravital imaging approaches based on a conventional laser scanning confocal or a two-photon microscope have been mostly limited to the observation of superficial parts of the solid tumor tissue. In this work, we implemented a small diameter needle-shaped side-view confocal endomicroscope that can be directly inserted into a solid tumor in a minimally-invasive manner in vivo. By inserting the side-view endomicroscope into the breast tumor from the surface, we achieved in vivo depth-wise cellular-level visualization of microvasculature and fluorescently labeled tumor cells located deeply inside the tumor. In addition, we successfully performed longitudinal depth-wise visualization of a growing breast tumor over three weeks in a live mouse model, which revealed dynamic changes in microvasculature such as a decreasing amount of intratumoral blood vessels over time.

10.
Biomed Opt Express ; 9(8): 3974-3982, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338168

RESUMO

Transdermal skin delivery is a method to transport various topical formulations to a deeper skin layer non-invasively. Permeability analysis of many delivering agents has been mostly conducted by a simple tape stripping method. However, it cannot reveal a detailed depth-dependent distribution profile of transdermally delivered agents in the skin. In this work, we achieved a cellular-level depth-defined visualization of fluorophore-labelled human epidermal growth factor (EGF) transdermally delivered to human skin by using encapsulation with common liposomes and newly fabricated multi-lamellar nanostructures using a custom-design two-photon microscopy system. It was able to generate 3D reconstructed images displaying the distribution of human EGF inside the human skin sample with high-resolution. Based on a depthwise fluorescence intensity profile showing the permeation of human EGF, a quantitative analysis was performed to assess the transdermal delivery efficacy achieved by each formulation, showing a significant improvement of the efficacy with the utilization of multi-lamellar nanostructure.

11.
Biomed Opt Express ; 9(5): 2383-2393, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760995

RESUMO

Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo, suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction.

12.
ACS Nano ; 12(7): 6904-6916, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29949348

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in psoriatic skin inflammation and acts as a key player in the pathogenesis and progression of this autoimmune disease. Although numerous inhibitors that intervene in STAT3-associated pathways have been tested, an effective, highly specific inhibitor of STAT3 has yet to be identified. Here, we evaluated the in vitro and in vivo biological activity and therapeutic efficacy of a high-affinity peptide specific for STAT3 (APTstat3) after topical treatment via intradermal and transcutaneous delivery. Using a preclinical model of psoriasis, we show that intradermal injection of APTstat3 tagged with a 9-arginine cell-penetrating peptide (APTstat3-9R) reduced disease progression and modulated psoriasis-related cytokine signaling through inhibition of STAT3 phosphorylation. Furthermore, by complexing APTstat3-9R with specific lipid formulations led to formation of discoidal lipid nanoparticles (DLNPs), we were able to achieve efficient skin penetration of the STAT3-inhibiting peptide after transcutaneous administration, thereby effectively inhibiting psoriatic skin inflammation. Collectively, these findings suggest that DLNP-assisted transcutaneous delivery of a STAT3-inhibiting peptide could be a promising strategy for treating psoriatic skin inflammation without causing adverse systemic events. Moreover, the DLNP system could be used for transdermal delivery of other therapeutic peptides.


Assuntos
Sistemas de Liberação de Medicamentos , Inflamação/tratamento farmacológico , Nanopartículas/química , Peptídeos/farmacologia , Psoríase/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Administração Cutânea , Animais , Células Cultivadas , Feminino , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Peptídeos/administração & dosagem , Psoríase/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo
13.
Biomed Opt Express ; 8(10): 4706-4716, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29082096

RESUMO

Indocyanine green (ICG) is a near-infrared fluorophore approved for human use which has been widely used for various clinical applications. Despite the well-established clinical usage, our understanding about the microscopic in vivo pharmacokinetics of systemically administered ICG has been relatively limited. In this work, we successfully visualized real-time in vivo pharmacokinetic dynamics of the intravenously injected free-form and liposomal ICG in cellular resolution by utilizing a custom-built video-rate near infrared laser-scanning confocal microscopy system. Initial perfusion and clearance from blood stream, diffusion into perisinusoidal space, and subsequent absorption into hepatocyte were directly visualized in vivo. The quantification analysis utilizing the real-time image sequences revealed distinct dynamic in vivo pharmacokinetic behavior of free-form and liposomal ICG.

14.
PLoS One ; 12(11): e0187660, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29099870

RESUMO

Bone marrow is a vital tissue that produces the majority of erythrocytes, thrombocytes, and immune cells. Bone marrow transplantation (BMT) has been widely performed in patients with blood disorders and cancers. However, the cellular-level behaviors of the transplanted bone marrow cells over wide-areas of the host bone marrow after the BMT are not fully understood yet. In this work, we performed a longitudinal wide-area cellular-level observation of the calvarial bone marrow after the BMT in vivo. Using a H2B-GFP/ß-actin-DsRed double-transgenic mouse model as a donor, a subcellular-level nuclear-cytoplasmic visualization of the transplanted bone marrow cells was achieved, which enabled a direct in vivo dynamic monitoring of the distribution and proliferation of the transplanted bone marrow cells. The same spots in the wide-area of the calvarial bone marrow were repeatedly identified using fluorescently labeled vasculature as a distinct landmark. It revealed various dynamic cellular-level behaviors of the transplanted BM cells in early stage such as cluster formation, migration, and active proliferation in vivo.


Assuntos
Transplante de Medula Óssea , Medula Óssea/patologia , Diferenciação Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Animais , Medula Óssea/diagnóstico por imagem , Linhagem da Célula , Citometria de Fluxo , Humanos , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal
15.
EMBO Mol Med ; 9(6): 750-769, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28438786

RESUMO

Thyroid gland vasculature has a distinguishable characteristic of endothelial fenestrae, a critical component for proper molecular transport. However, the signaling pathway that critically governs the maintenance of thyroid vascular integrity, including endothelial fenestrae, is poorly understood. Here, we found profound and distinct expression of follicular epithelial VEGF-A and vascular VEGFR2 that were precisely regulated by circulating thyrotropin, while there were no meaningful expression of angiopoietin-Tie2 system in the thyroid gland. Our genetic depletion experiments revealed that VEGFR2, but not VEGFR3, is indispensable for maintenance of thyroid vascular integrity. Notably, blockade of VEGF-A or VEGFR2 not only abrogated vascular remodeling but also inhibited follicular hypertrophy, which led to the reduction of thyroid weights during goitrogenesis. Importantly, VEGFR2 blockade alone was sufficient to cause a reduction of endothelial fenestrae with decreases in thyrotropin-responsive genes in goitrogen-fed thyroids. Collectively, these findings establish follicular VEGF-A-vascular VEGFR2 axis as a main regulator for thyrotropin-dependent thyroid angiofollicular remodeling and goitrogenesis.


Assuntos
Bócio/patologia , Bócio/fisiopatologia , Glândula Tireoide/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Sci Rep ; 6: 33084, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605489

RESUMO

Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mice were also investigated.


Assuntos
Células Sanguíneas/citologia , Capilares/citologia , Holografia/métodos , Microscopia Intravital/métodos , Animais , Forma Celular/fisiologia , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos BALB C , Refratometria/métodos
17.
Biomed Opt Express ; 6(6): 2158-67, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26114035

RESUMO

The number of circulating tumor cell (CTC) in the peripheral blood of cancer patients can be a valuable biomarker for cancer diagnosis and treatment monitoring. In this study, we implemented a custom-design video-rate confocal microscopy system in capable of direct visualization of fast flowing CTC at great saphenous vein (GSV) of a live animal model in vivo. Continuous acquisition of video-rate images at GSV revealed the highly dynamic time-dependent changes in the number of intravenously injected circulating tumor cells. By extracting a calibration factor through the hemocytometric analysis of intravenously injected long-circulating red blood cells, we established a novel quantitation method for CTC in whole body blood in vivo.

18.
Biomed Opt Express ; 6(10): 3963-72, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26504646

RESUMO

Visualization of cellular dynamics in the gastrointestinal tract of living mouse model to investigate the pathophysiology has been a long-pursuing goal. Especially, for chronic disease such as Crohn's disease, a longitudinal observation of the luminal surface of the small intestine in the single mouse is highly desirable to investigate the complex pathogenesis in sequential time points. In this work, by utilizing a micro-GRIN lens based side-view endomicroscope integrated into a video-rate confocal microscopy system, we successfully performed minimally-invasive in vivo cellular-level visualization of various fluorescent cells and microvasculature in the small intestinal villi. Also, with a transgenic mouse universally expressing photoconvertible protein, Kaede, we demonstrated repetitive cellular-level confocal endoscopic visualization of same area in the small intestinal lumen of a single mouse, which revealed the continuous homeostatic renewal of the small intestinal epithelium.

19.
Biomed Opt Express ; 6(10): 4154-64, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26504662

RESUMO

Lymph node (LN) is an important immune organ that controls adaptive immune responses against foreign pathogens and abnormal cells. To facilitate efficient immune function, LN has highly organized 3D cellular structures, vascular and lymphatic system. Unfortunately, conventional histological analysis relying on thin-sliced tissue has limitations in 3D cellular analysis due to structural disruption and tissue loss in the processes of fixation and tissue slicing. Optical sectioning confocal microscopy has been utilized to analyze 3D structure of intact LN tissue without physical tissue slicing. However, light scattering within biological tissues limits the imaging depth only to superficial portion of LN cortex. Recently, optical clearing techniques have shown enhancement of imaging depth in various biological tissues, but their efficacy for LN are remained to be investigated. In this work, we established optical clearing procedure for LN and achieved 3D volumetric visualization of the whole cortex of LN. More than 4 times improvement in imaging depth was confirmed by using LN obtained from H2B-GFP/actin-DsRed double reporter transgenic mouse. With adoptive transfer of GFP expressing B cells and DsRed expressing T cells and fluorescent vascular labeling by anti-CD31 and anti-LYVE-1 antibody conjugates, we successfully visualized major cellular-level structures such as T-cell zone, B-cell follicle and germinal center. Further, we visualized the GFP expressing metastatic melanoma cell colony, vasculature and lymphatic vessels in the LN cortex.

20.
J Clin Invest ; 125(11): 4042-52, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26436648

RESUMO

Lacteals are lymphatic vessels located at the center of each intestinal villus and provide essential transport routes for lipids and other lipophilic molecules. However, it is unclear how absorbed molecules are transported through the lacteal. Here, we used reporter mice that express GFP under the control of the lymphatic-specific promoter Prox1 and a custom-built confocal microscope and performed intravital real-time visualization of the absorption and transport dynamics of fluorescence-tagged fatty acids (FAs) and various exogenous molecules in the intestinal villi in vivo. These analyses clearly revealed transepithelial absorption of these molecules via enterocytes, diffusive distribution over the lamina propria, and subsequent transport through lacteals. Moreover, we observed active contraction of lacteals, which seemed to be directly involved in dietary lipid drainage. Our analysis revealed that the smooth muscles that surround each lacteal are responsible for contractile dynamics and that lacteal contraction is ultimately controlled by the autonomic nervous system. These results indicate that the lacteal is a unique organ-specific lymphatic system and does not merely serve as a passive conduit but as an active pump that transports lipids. Collectively, using this efficient imaging method, we uncovered drainage of absorbed molecules in small intestinal villus lacteals and the involvement of lacteal contractibility.


Assuntos
Gorduras na Dieta/farmacocinética , Enterócitos/metabolismo , Ácidos Graxos/farmacocinética , Absorção Intestinal/fisiologia , Mucosa Intestinal/ultraestrutura , Intestino Delgado/metabolismo , Microscopia Intravital , Vasos Linfáticos/fisiologia , Microvilosidades/fisiologia , Contração Muscular , Músculo Liso/fisiologia , Animais , Sistema Nervoso Autônomo/fisiologia , Transporte Biológico , Corantes/farmacocinética , Corantes Fluorescentes/farmacocinética , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Homeodomínio/genética , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/inervação , Vasos Linfáticos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Vídeo , Contração Muscular/efeitos dos fármacos , Norepinefrina/farmacologia , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA