Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Pharm Res ; 41(6): 1183-1199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38849712

RESUMO

AIM: This study aimed to fabricate dexamethasone sodium phosphate loaded microneedle arrays (MNA) and investigate their efficiency in combination with iontophoresis for the treatment of hind paw oedema in rats. METHODS: Drug loaded polyvinyl alcohol, polyvinyl pyrrolidone and D-sorbitol-based MNA11 were fabricated by vacuum micromolding. Physicochemical, morphological, thermal, in-silico, in-vitro insertion ability (on parafilm) and drug release studies were performed. Ex-vivo permeation, in-vivo insertion and anti-inflammatory studies were performed in combination with iontophoresis. RESULTS: MNA11 displayed sharp-tipped projections and acceptable physicochemical features. Differential scanning calorimetry results indicated that drug loaded MNA11 were amorphous solids. Drug interacted with PVP and PVA predominately via hydrogen bonding. Parafilm displayed conspicuously engraved complementary structure of MNA11. Within 60 min, 91.50 ± 3.1% drug released from MNA11. A significantly higher i.e., 95.06 ± 2.5% permeation of drug was observed rapidly (within 60 min) from MNA11-iontophoresis combination than MNA11 i.e., 84.07 ± 3.5% within 240 min. Rat skin treated using MNA11 and MNA11-iontophoresis showed disruptions / microchannels in the epidermis without any damage to underlying anatomical structures. MNA11-iontophoresis combination led to significant reduction (83.02 ± 3.9%) in paw oedema as compared to MNA11 alone (72.55 ± 4.1%). CONCLUSION: MNA11-iontophoresis combination can act as a promising candidate to deliver drugs transcutaneously for treating inflammatory diseases.


Assuntos
Administração Cutânea , Anti-Inflamatórios , Dexametasona , Sistemas de Liberação de Medicamentos , Edema , Iontoforese , Agulhas , Absorção Cutânea , Pele , Animais , Iontoforese/métodos , Dexametasona/administração & dosagem , Dexametasona/farmacocinética , Dexametasona/análogos & derivados , Ratos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Edema/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos , Masculino , Liberação Controlada de Fármacos , Inflamação/tratamento farmacológico , Ratos Sprague-Dawley
2.
Chem Biodivers ; : e202400615, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958197

RESUMO

Wound healing is a critical process in tissue repair following injury, and traditional herbal therapies have long been utilized to facilitate this process. This review delves into the mechanistic understanding of the significant contribution of pharmacologically demonstrated natural products in wound healing. Natural products, often perceived as complex yet safely consumed compared to synthetic chemicals, play a crucial role in enhancing the wound-healing process. Drawing upon a comprehensive search strategy utilizing databases such as PubMed, Scopus, Web of Science, and Google Scholar, this review synthesizes evidence on the role of natural products in wound healing. While the exact pharmacological mechanisms of secondary metabolites in wound healing remain to be fully elucidated, compounds from alkaloids, phenols, terpenes, and other sources are explored here to delineate their specific roles in wound repair. Each phytochemical group exerts distinct actions in tissue repair, with some displaying multifaceted roles in various pathways, potentially enhancing their therapeutic value, supported by reported safety profiles. Additionally, these compounds exhibit promise in the prevention of keloids and scars. Their potential alongside economic feasibility may propel them towards pharmaceutical product development. Several isolated compounds, from natural sources, are undergoing investigation in clinical trials, with many reaching advanced stages.

3.
Chem Biodivers ; 21(1): e202301375, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38031244

RESUMO

Trillium govanianum is a high-value medicinal herb, having multifunctional traditional and culinary uses. The present investigation was carried out to evaluate the phytochemical, biological and toxicological parameters of the T. govanianum Wall. ex D. Don (Family: Trilliaceae) roots collected from Azad Kashmir, Pakistan. Phytochemical profiling was achieved by determining total bioactive contents (total phenolic and flavonoid contents) and UHPLC-MS analysis. For biological evaluation, antioxidant activities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation assays) and enzyme inhibition activities (against AChE, BChE, glucosidase, amylase, and tyrosinase) were performed. Moreover, cytotoxicity was assessed against three human carcinoma cell lines (MDA-MB-231, CaSki, and DU-145). The tested extract was found to contain higher total phenolics (7.56 mg GAE/g dry extract) as compared to flavonoid contents (0.45 mg RE/g dry extract). Likewise, for the antioxidant activity, higher CUPRAC activity was noted with 39.84 mg TE/g dry extract values. In the case of enzyme assays, higher activity was pointed out against the cholinesterase, glucosidase and tyrosinase enzymes. The plant extract displayed significant cytotoxicity against the cell lines examined. Moreover, the in-silico studies highlighted the interaction between the important phytochemicals and tested enzymes. To conclude, the assessed biological activity and the existence of bioactive phytochemicals in the studied plant extract may pave the way for the development of novel pharmaceuticals.


Assuntos
Trillium , Humanos , Trillium/química , Monofenol Mono-Oxigenase , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/farmacologia , Flavonoides/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosidases , Compostos Fitoquímicos/química
4.
Inflammopharmacology ; 32(2): 1333-1351, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994993

RESUMO

Biocompatible anti-inflammatory lignin-capped Ag (LCAg) nanoparticles (NPs) were synthesized for the delivery of galloyl ß-sitosterol (Galloyl-BS). ß-Sitosterol (BS) is effective against inflammatory responses, like cancer-induced inflammations. BS was modified via gallic acid esterification to enhance its anti-inflammatory potential. LCAg NPs were synthesized by a green method and loaded with galloyl-BS. For comparison, pure BS was also loaded onto LCAg NPs in a separate assembly. The antioxidant potential of Galloyl-BS was greater (IC50 177 µM) than pure BS. Materials were characterized by FT-IR, SEM, XRD, and Zeta potential. Using UV-Vis spectroscopy, drug release experiments were performed by varying pH, time, concentration, and temperature. Maximum drug release was observed after 18 h at pH 6 and 40 °C. Galloyl-BS showed improved drug loading efficiency, release %age, and antioxidant activity compared to pure BS when loaded onto LCAg NPs. DLCAg exhibited excellent anti-inflammatory activity in rat models. These findings indicate that galloyl-BS (drug)-loaded LCAg (DLCAg) NPs have the potential as an anti-inflammatory agent without any prior release and scavenging in normal cells.


Assuntos
Lignina , Nanopartículas Metálicas , Sitosteroides , Ratos , Animais , Lignina/farmacologia , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia
5.
Crit Rev Food Sci Nutr ; : 1-24, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37255100

RESUMO

Enzymes are biologically active complex protein molecules that catalyze most chemical reactions in living organisms, and their inhibitors accelerate biological processes. This review emphasizes medicinal food plants and their isolated chemicals inhibiting clinically important enzymes in common diseases. A mechanistic overview was investigated to explain the mechanism of these food bases enzyme inhibitors. The enzyme inhibition potential of medicinal food plants and their isolated substances was searched in Ovid, PubMed, Science Direct, Scopus, and Google Scholar. Cholinesterase, amylase, glucosidase, xanthine oxidase, tyrosinase, urease, lipoxygenase, and others were inhibited by crude extracts, solvent fractions, or isolated pure chemicals from medicinal food plants. Several natural compounds have shown tyrosinase inhibition potential, including quercetin, glabridin, phloretin-4-O-ß-D-glucopyranoside, lupinalbin, and others. Some of these compounds' inhibitory kinetics and molecular mechanisms are also discussed. Phenolics and flavonoids inhibit enzyme activity best among the secondary metabolites investigated. Several studies showed flavonoids' significant antioxidant and anti-inflammatory activities, highlighting their medicinal potential. Overall, many medicinal food plants, their crude extracts/fractions, and isolated compounds have been studied, and some promising compounds depending on the enzyme have been found. Still, more studies are recommended to derive potential pharmacologically active functional foods.

6.
Inflammopharmacology ; 31(4): 1849-1862, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37179510

RESUMO

Inflammation is the core contributor in the pathogenesis of various acute and chronic illness including appendicitis, bronchitis, arthritis, cancer and neurological diseases. NSAIDs, commonly used medications for inflammatory diseases, on prolonged use cause GI bleeding, ulcers and many more issues. Plant-based therapeutic agents including essential oils in combination with low-dose synthetic drugs have been shown to produce synergistic effects and reduce complications of synthetic drugs. This study was designed to evaluate the anti-inflammatory, analgesic and anti-pyretic properties of Eucalyptus globulus essential oil alone and in combination with flurbiprofen. GC-MS analysis was performed to screen chemical composition of oil. In vitro anti-inflammatory assay (membrane stabilization assay) and in vivo inflammatory acute (carrageenan and histamine-induced paw oedema) and chronic (cotton pellet-induced granuloma and Complete Freund's adjuvant-induced arthritis) models were performed to check anti-inflammatory properties. Acetic acid-induced algesia and yeast-induced pyrexia models were performed to check analgesic and anti-pyretic properties. qRT-PCR was performed to study the effect of treatments on the expression of inflammatory biomarkers. GC-MS analysis of E. globulus essential oil showed the presence of eucalyptol along with other active biomolecules. 500 + 10 mg/kg of oil-drug combination showed significantly (p < 0.05) better in vitro membrane stabilization effects as compared with groups treated with 500 mg/kg of E. globulus oil and 10 mg/kg of Flurbiprofen alone. 500 + 10 mg/kg of oil-drug combination showed significantly (p < 0.05) better anti-inflammatory, analgesic and antipyretic effects as compared to 500 mg/kg of E. globulus oil alone in all in vivo models. When comparison was done between 500 + 10 mg/kg of oil-drug combination-treated and 10 mg/kg Flurbiprofen-treated group, the former group showed significantly (p < 0.05) better anti-inflammatory and anti-pyretic effects, but there were non-significant differences in the analgesic model. Animal group treated with 10 mg/kg of Flurbiprofen showed significantly (p < 0.05) better anti-inflammatory and analgesic effects than group treated with 500 mg/kg of oil alone while, there were non-significant differences in anti-pyretic effects. qRT-PCR analysis showed significant (p < 0.05) down-regulation in the expression of IL-4 and TNF-α in serum samples of animals treated with 500 + 10 mg/kg of oil-drug combination as compared to the diseased control (arthritic) group. Overall, the current research demonstrates that Eucalyptus globulus essential oil in combination with flurbiprofen showed better anti-inflammatory, analgesic and anti-pyretic effects than oil and flurbiprofen alone which is attributed to the down-regulation of pro-inflammatory biomarkers (IL-4 and TNF-α). Further studies are required to formulate a stable dosage form and to check the anti-inflammatory efficacy in different inflammatory disorders.


Assuntos
Artrite , Eucalyptus , Flurbiprofeno , Óleos Voláteis , Animais , Flurbiprofeno/farmacologia , Flurbiprofeno/uso terapêutico , Eucaliptol/farmacologia , Eucaliptol/uso terapêutico , Eucalyptus/química , Óleo de Eucalipto/farmacologia , Interleucina-4 , Fator de Necrose Tumoral alfa , Anti-Inflamatórios , Analgésicos , Anti-Inflamatórios não Esteroides/farmacologia , Febre/tratamento farmacológico , Extratos Vegetais/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Artrite/tratamento farmacológico
7.
AAPS PharmSciTech ; 24(8): 242, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017208

RESUMO

This study aimed to prepare tamsulosin hydrochloride (HCl)-loaded in situ gelling formulation by using hydroxypropyl methylcellulose (HPMC), gellan gum, poloxamer 188, and benzalkonium chloride. Physicochemical evaluation of formulations included determination of pH, viscosity, gelation time, gel strength, drug content, and sterility. In silico study was performed to analyze interactions between polymers, drug, and mucin glycoprotein. In vitro degradation time, drug release, ex vivo mucoadhesion time, permeation, in vivo pharmacokinetics, and stability studies were performed to assess the formulation. Formulations were transparent and displayed acceptable physicochemical attributes. Tamsulosin HCl and polymers interacted via non-covalent interactions. HPMC formed hydrogen bonds, hydrophobic and van der Waals interactions with mucin protein while the drug formed hydrogen bonds only. Gel formulation degraded in simulated nasal fluid within 24 h. In situ gelling formulation showed 83.8 ± 1.7% drug release and remained adhered to the mucosa for 24.5 ± 1 h. A higher (~ 1.85 times) drug permeation was recorded through mucosa within 6 h by in situ gelling formulation when compared to control counterparts (aqueous solution of drug and in situ gelling formulation without poloxamer 188). Nasal administration of tamsulosin HCl by using in situ gelling formulation led to a ~ 3.3 and ~ 3.5 times, respectively, higher Cmax (maximum plasma concentration) and AUCtotal (total area under the curve) than the orally administered aqueous solution. Relative bioavailability of drug delivered by nasal in situ gelling formulation was 3.5 times the oral counterpart. These results indicated that the prepared in situ gelling formulation can act as a promising candidate for systemic administration of tamsulosin HCl.


Assuntos
Mucosa Nasal , Poloxâmero , Tansulosina/metabolismo , Poloxâmero/química , Administração Intranasal , Mucosa Nasal/metabolismo , Mucinas/metabolismo , Géis/química , Sistemas de Liberação de Medicamentos
8.
Pak J Pharm Sci ; 33(1): 149-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32122843

RESUMO

A series of new compounds (5a-q), derived from 5-(1-(4-nitrophenylsulfonyl) piperidin-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiol (3) were proficiently synthesized to evaluate their biological activities. 1-(4-Nitrophenylsulfonyl) piperidine-4-carbohydrazide (2) was refluxed with phenylisothiocyanate to yield an adduct which was cyclized to compound 3 by reflux reaction with 10 % potassium hydroxide. The targeted compounds 5a-q, were synthesized by stirring alkyl/aralkyl halides (4a-q) and compound 3 in a polar aprotic solvent. 1H-NMR, 13C-NMR, EI-MS and IR spectral techniques were employed to confirm the structures of all the synthesized compounds. The compounds were biologically evaluated for BSA binding studies followed by anti-bacterial, anti-inflammatory and acetylcholinesterase (AChE) activities. The active sites responsible for the best AChE inhibition were identified through molecular docking studies. Compound 5e bearing 4-chlorobenzyl moiety found most active antibacterial and anti-inflammatory agent among the synthesized compounds. The whole library of synthesized compounds except compounds 5d and 5f was found highly active for AChE inhibition and recommended for in vivo studies so that their therapeutic applications may come in utilization.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Albumina Sérica/metabolismo , Triazóis/farmacologia , Antibacterianos/síntese química , Anti-Inflamatórios/síntese química , Inibidores da Colinesterase/síntese química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperidinas/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
9.
J Cell Biochem ; 120(1): 425-438, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30191607

RESUMO

There has been a dramatic increase in the prevalence of diabetes mellitus (DM) and its associated complications globally. The postprandial stage of DM involves prompt elevation in the levels of blood glucose and α-amylase, a carbohydrate-metabolizing enzyme is mainly involved in the regulation of postprandial hyperglycemia. This study was designed to assess the ability of a well-known flavonoid, taxifolin (TFN), against postprandial hyperglycemia and its inhibitory effects on α-amylase activity through the assessment of therapeutic potentials of TFN in an alloxan-induced diabetic animal model. The binding potential TFN with an α-amylase receptor was also investigated through molecular dynamics (MD) simulation and docking of to compare the binding affinities and energies of TFN and standard drug acarbose (ACB) with target enzyme. TFN significantly improved the postprandial hyperglycemia, lipid profile, and serum levels of α-amylase, lipase, and C-reactive protein in a dose-dependent manner when compared with that of either DM-induced and ACB-treated alloxan-induced diabetic rats. Moreover, TFN also enhanced the anti-oxidant status and normal functioning of the liver in alloxan-induced diabetic rats more efficiently as compared to that of ACB-treated alloxan-induced diabetic rats. Therapeutic potentials of TFN were also verified by MD simulation and docking results, which exhibited that the binding energy and affinity of TFN to bind with receptor was significantly higher as compared to that of ACB. Hence, the results of this study signify that TFN might be a potent inhibitor of α-amylase that has the potential to regulate the postprandial hyperglycemia along with its anti-inflammatory and anti-oxidant properties during the treatment of DM.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/uso terapêutico , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Quercetina/análogos & derivados , alfa-Amilases/sangue , Acarbose/administração & dosagem , Acarbose/uso terapêutico , Aloxano/administração & dosagem , Aloxano/farmacologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Glicemia/metabolismo , Proteína C-Reativa/análise , Domínio Catalítico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Inibidores de Glicosídeo Hidrolases/administração & dosagem , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Lipase/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Quercetina/administração & dosagem , Quercetina/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos , alfa-Amilases/antagonistas & inibidores
10.
Medicina (Kaunas) ; 55(10)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627446

RESUMO

: Chronic kidney disease (CKD)-associated pruritus is a common and disturbing condition which has a negative impact on sleep quality, as well as overall health-related quality of life of patients receiving hemodialysis. To date, no systematic review has been undertaken, and there is a lack of concise evidence that statistically quantifies the impact of pruritus based on published data. A systematic search was done for original articles published in peer-reviewed English journals from database inception on 20 December, 2018, in the following databases: PubMed, MEDLINE, EMBASE, Ovid, CINHAL, ProQuest, and Scopus. A total of 9217 research articles were identified. After removal of duplicates and screening for titles and abstracts, 28 articles were selected. The prevalence of disturbed sleep was 4-94%, while the pooled proportion on random effect in the study was 40% (95% CI = 0.30 to 0.49); I2 = 99.8%. However, the prevalence of disturbed sleep quality and quantity due to pruritus was 9-76%, and the pooled proportion on random effect in the study was 50% (95% CI = 0.37 to 0.64); I2 = 99.8%. Patients undergoing hemodialysis who are affected by CKD-associated pruritus have a higher chance of experiencing sleep disturbances. The prevalence of disturbed sleep due to CKD-associated pruritus was found to be 9-76% in the included studies for patients receiving hemodialysis therapy.


Assuntos
Prurido/complicações , Prurido/psicologia , Qualidade de Vida/psicologia , Transtornos do Sono-Vigília/etiologia , Humanos , Prurido/etiologia , Diálise Renal/métodos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/psicologia , Transtornos do Sono-Vigília/psicologia
11.
Polim Med ; 49(1): 35-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31769938

RESUMO

BACKGROUND: Poorly water-soluble drugs do not dissolve well in aqueous-based gastrointestinal fluid; therefore, they are not well absorbed. Thus, employing a suitable solubility enhancing technique is necessary for such a drug. Drug/HP­ß­CD complexation is a promising way to improve solubility and dissolution of a poorly water-soluble drug. Levodropropizine was used as a model drug in this study. OBJECTIVES: The purpose of this research was to enhance the aqueous solubility and dissolution rate of levodropropizine by employing the inclusion complexation technique. MATERIAL AND METHODS: A microparticle formulation was prepared from levodropropizine and hydroxypropyl-ß-cyclodextrin (HP­ß­CD) in a 1:1 molar ratio through the spray-drying technique. The host-guest relationship between levodropropizine and HP­ß­CD was also investigated using the molecular docking computational methodology. The aqueous solubility and dissolution rate of levodropropizine in formulations were assessed and compared with those of the drug alone. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were applied for the solid-state characterization of the prepared samples. RESULTS: According to the research outcomes, the levodropropizine/HP­ß­CD formulation had enhanced the aqueous solubility (351.12 ±13.26 vs 92.76 ±5.00 mg/mL) and dissolution rate (97.83 ±3.36 vs 3.12 ±1.76% in 10 min) of levodropropizine, compared to the plain drug powder. The levodropropizine/ HP­ß­CD formulation had converted the crystalline drug into its amorphous counterpart. Furthermore, no covalent interaction was found to exist between levodropropizine and HP­ß­CD. The spray-dried particles were discrete. Each particle had a shriveled appearance. CONCLUSIONS: The levodropropizine/HP­ß­CD formulation is, therefore, recommended for the more effective administration of levodropropizine through the oral route.


Assuntos
Propilenoglicóis , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
12.
Nat Prod Res ; : 1-16, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949575

RESUMO

Crotalaria burhia (Family: Fabaceae) is an important medicinal plant widely distributed in arid parts of the world, including Pakistan, India, and Afghanistan. This plant has enormous ethnobotanical values and is used to treat various common ailments such as swelling, infections, cancer, hydrophobia, pain and skin diseases. Moreover, it is also utilised as food for goats, to make sheds for animals and as a suitable soil binder. This review article is an attempt to analyse critically and to provide updated and categorised information about C. burhia including comprehensive knowledge of the botanical description, traditional/folklore uses, phytochemistry, pharmacological/biological potential, and to facilitate scientific basis for future work. The phytochemical studies (qualitative and quantitative) on C. burhia have indicated the presence of important phytochemical classes, namely alkaloids, flavonoids, glycosides, saponins, phenolics, tannins, steroids, and terpenoids. Pharmacological studies such as anti-inflammatory/analgesic, antioxidant, anti-microbial, anti-tumour, anti-nociceptive, enzyme inhibition, and termiticidal activities were reported from different parts of this plant. Most of the bioassays from this plant have been done on the crude extract. Minimal information about the phytochemicals (responsible for biological activities), except a few compounds has been reported. The potential chemical compounds may need to be purified and tested for the biological potential from isolated compounds in future.

13.
Biomater Adv ; 164: 213995, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39154559

RESUMO

This study aimed to prepare and assess active microneedle (MN) patches based on a novel biomaterial and their effective coupled (physical and electrical) transdermal delivery of a model drug (Linezoid). Modified MN patches (e.g. fabricated from Linezoid, boronated chitosan, polyvinyl alcohol and D-sorbitol) were engineered using a vacuum micromoulding method. Physicochemical, FTIR (Fourier transform infrared), in-silico, structural and thermal analysis of prepared formulations were conducted to ascertain MN quality, composition and integrity. In-vitro mechanical tests, membrane toxicity, drug release, antibiofilm, ex-vivo mucoadhesion, insertion and in-vivo antibiofilm studies were performed to further validate viability of the coupled system. Optimized MN patch formulation (CSHP3 - comprising of 3 % w/v boronated chitosan, 3.5 % w/v PVA and 10 % w/w D-sorbitol) exhibited sharp-tipped, equi-distant and uniform-surfaced micron-scaled projections with conforming physicochemical features. FTIR analysis confirmed modification (i.e., boronation) of chitosan and compatibility as well as interaction between CSHP3 constituents. In-silico analysis indicated non-covalent interactions between all formulation constituents. Moreover, boronated chitosan-mucin glycoprotein complex showed a stronger bonding (∼1.86 times higher CScore) as compared to linezolid-mucin counterpart. Thermal analysis indicated amorphous nature of CSHP3. A âˆ¼ 1.42 times higher tensile strength was displayed by CSHP3 as compared to control (i.e., pure chitosan, polyvinyl alcohol and D-sorbitol-based MN patch). Membrane toxicity study indicated non-toxic and physiological compatible nature of CSHP3. Within 90 min, 91.99 ± 2.3 % linezolid was released from CSHP3. During release study on agarose gel, CSHP3-iontophoresis treatment resulted in a âˆ¼ 1.78 and âˆ¼ 1.20 times higher methylene blue-covered area and optical density, respectively, within 60 min as compared to CSHP3 treatment alone. Staphylococcus aureus biofilms treated with CSHP3 exhibited 65 ± 4.2 % reduction in their mass. CSHP3 MN patches remained adhered to the rabbit oral mucosa for 6 ± 0.15 h. Mucosa treated with CSHP3 and CSHP3-iontophoresis combination showed a generation of pathways in the epithelium layers without any damage to the underlying lamina propria. Eradication of Staphylococcus aureus from oral mucosal wounds and complete tissue regeneration was recorded following 7-day treatment using CSHP3-iontophoresis coupled approach.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Linezolida , Linezolida/química , Linezolida/farmacologia , Agulhas , Quitosana/química , Administração Cutânea , Masculino , Feminino , Animais , Coelhos , Fenômenos Químicos , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Sistemas de Liberação de Medicamentos , Staphylococcus aureus/efeitos dos fármacos , Administração Oral , Antibacterianos/química , Antibacterianos/farmacologia
14.
Eur J Pharm Biopharm ; 200: 114312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735345

RESUMO

BACKGROUND: Nanomedicine, as the combination of radiopharmaceutical and nanocarrier (QDs), is developed for treating cancer. Gallic acid is antimutagenic, anti-inflammatory, and anti-carcinogenic. Typical retention time of gallic acid is approximately 4 to 8 h. To increase the retention time gallic acid is converted to prodrug by adding lipophilic moieties, encapsulating in lipophilic nanoparticles, or liposome formation. Similarly, thymoquinone is powerful antioxidant, anti-apoptotic, and anti-inflammatory effect, with reduced DNA damage. METHODS: In this study, a hydrophilic drug (gallic acid) is chemically linked to the hydrophobic drug (thymohydroquinone) to overcome the limitations of co-delivery of drugs. Thymohydroquinone (THQG) as the combination of gallic acid (GA) and thymoquinone (THQ) is loaded onto the PEI functionalized antimonene quantum dots (AM-QDs) and characterized by FTIR, UV-visible spectroscopy, X-ray powder diffraction, Zeta sizer, SEM and AFM, in-vitro and in-vivo assay, and hemolysis. RESULTS: The calculated drug loading efficiency is 90 %. Drug release study suggests the drug combination is pH sensitive and it can encounters acidic pH, releasing the drug from the nanocarrier. The drug and drug-loaded nanocarrier possesses low cytotoxicity and cell viability on MCF-7 and Cal-27 cell lines. The proposed drug delivery system is radiolabeled with Iodine-131 (131I) and Technetium (99mTc) and its deposition in various organs of rats' bodies is examined by SPECT-CT and gamma camera. Hemolytic activity of 2, 4, 6, and 8 µg/mL is 1.78, 4.16, 9.77, and 15.79 %, respectively, reflecting low levels of hemolysis. The system also sustains oxidative stress in cells and environment, decreasing ROS production to shield cells and keep them healthy. CONCLUSIONS: The results of this study suggest that the proposed drug carrier system can be used as a multi-modal theragnostic agent in cancer treatment.


Assuntos
Ácido Gálico , Pontos Quânticos , Animais , Ratos , Ácido Gálico/química , Ácido Gálico/farmacologia , Pontos Quânticos/química , Humanos , Concentração de Íons de Hidrogênio , Benzoquinonas/química , Benzoquinonas/administração & dosagem , Benzoquinonas/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Masculino , Células MCF-7 , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos
15.
J Biomol Struct Dyn ; 42(5): 2242-2256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37211823

RESUMO

Developing highly potent covalent inhibitors of Fibroblast growth factor receptors 1 (FGFR1) has always been a challenging task. In the current study, various computational techniques, such as 3D-QSAR, covalent docking, fingerprinting analysis, MD simulation followed by MMGB/PBSA, and per-residue energy decomposition analysis were used to explore the binding mechanism of pyrazolo[3,4-d]pyridazinone derivatives to FGFR1. The high q2 and r2 values for the CoMFA and CoMSIA models, suggest that the constructed 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The structural requirements revealed by the model's contour maps were strategically used to computationally create an in-house library of more than 100 new FGFR1 inhibitors using the R-group exploration technique implemented in the SparkTM software. The compounds from the in-house library were also mapped in the 3D-QSAR model that predicts comparable pIC50 values with the experimental values. A comparison between 3D-QSAR generated contours and molecular docking conformation of ligands was performed to reveal the fundamentals to design potent FGFR1 covalent inhibitors. The estimated binding free energies (MMGB/PBSA) for the selected compounds were in agreement with the experimental value ranking of their binding affinities towards FGFR1. Furthermore, per-residue energy decomposition analysis has identified Arg627 and Glu531 to contribute significantly in improved binding affinity of compound W16. During ADME analysis, the majority of in-house library compounds exhibited pharmacokinetic properties superior to those of experimentally produced compounds. These new compounds may help researchers better understand FGFR1 inhibition and lead to the creation of novel, potent FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Simulação de Dinâmica Molecular , Pirazóis , Piridazinas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Pirazóis/química , Pirazóis/farmacologia , Piridazinas/química , Piridazinas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores
16.
Chem Biol Interact ; 393: 110940, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38467339

RESUMO

Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Ciclinas/uso terapêutico , Neoplasias/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
17.
J Biomol Struct Dyn ; : 1-16, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38444393

RESUMO

Janus kinase 2(JAK2) is a potential target for anticancer drugs in the treatment of numerous myeloproliferative diseases due to its central role in the JAK/STAT signaling cascade. In this study, the binding behavior of 2 amino-pyridine derivatives as JAK2 inhibitors was investigated by using multifaceted strategies including 3D-QSAR, molecular docking, Fingerprint analysis, MD simulations, and MM-PBSA calculations. A credible COMFA (q2 = 0.606 and r2 = 0.919) and COMSIA (q2 = 0.641 and r2 = 0.992) model was developed, where the internal and external validation revealed that the obtained 3D-QSAR models could be capable of predicting bioactivities of JAK2 inhibitors. The structural criteria provided by the contour maps of model were used to computationally develop more potent 100 new JAK2 inhibitors. Docking studies were conducted on the model data set and newly developed compounds (in-house library) to demonstrate their binding mechanism and highlight the key interacting residues within JAK2 active site. The selected docked complexes underwent MD simulation (100 ns), which contributed in the further study of the binding interactions. Binding free energy analyses (MMGB/PBSA) revealed that key residues such as Glu930, Leu932 (hinge region), Asp939 (solvent accessible region), Arg980, Asn981and Asp994 (catalytic site) have a significantly facilitate ligand-protein interactions through H-bonding and van der Waals interactions. The preliminary in-silico ADMET evaluation revealed encouraging results for all the modeled and in-house library compounds. The findings of this research have the potential to offer valuable recommendations for the advancement of novel, potent, and efficacious JAK2 inhibitors. Overall, this work has successfully employed a wide range of computer-based methodologies to understand the interaction dynamics between 2-amino-pyridine derivatives and the JAK2 enzyme, which is a crucial target in myeloproliferative disorders.Communicated by Ramaswamy H. Sarma.

18.
Comput Biol Chem ; 108: 108003, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159453

RESUMO

CDK9 is an emerging target for the development of anticancer drugs. The development of CDK9 inhibitors with significant potency had consistently posed a formidable challenge. In the current research, a number of computational methodologies, such as, 3D-QSAR, molecular docking, fingerprint analysis, molecular dynamic (MD) simulations followed by MMGB/PBSA and ADMET studies were used systemically to uncover the binding mechanism of pyrimidine derivatives against CDK9. The CoMFA and CoMSIA models having high q2 (0.53, 0.54) and r2 values (0.96, 0.93) respectively indicating that model could accurately predict the bioactivities of CDK9 inhibitors. Using the R-group exploration technique implemented by the Spark™ by Cresset group, the structural requirements revealed by the contour maps of model were utilized strategically to create an in-house library of 100 new CDK9 inhibitors. Additionally, the compounds from the in-house library were mapped into 3D-QSAR model which predicted pIC50 values comparable to the experimental values. A comparison between 3D-QSAR generated contours and molecular docking conformation of ligands was performed to elucidate the essentials of CDK9 inhibitor design. MD simulations (100 ns) were performed on the selected docked complexes A21, A14 and D98 which contributed in validating the binding interactions. According to the findings of binding free energy analysis (MMGB/PBSA), It was observed that residues CYS106 and GLU107 had a considerable tendency to facilitate ligand-protein interactions via H-bond interactions. The aforementioned findings have the potential to enhance researchers comprehension of the mechanism underlying CDK9 inhibition and may be utilized in the development of innovative and efficacious CDK9 inhibitors.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Ligação Proteica , Pirimidinas/farmacologia
19.
Discov Nano ; 18(1): 21, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36811724

RESUMO

Metformin (MET) is an anti-diabetic drug employed as the first-line therapy for patients of type II diabetes mellitus (T2DM). Overdosage of drugs leads to severe outcomes, and its monitoring in biofluids is vital. The present study develops cobalt-doped yttrium iron garnets and employs them as an electroactive material immobilized on a glassy carbon electrode (GCE) for the sensitive and selective detection of metformin via electroanalytical techniques. The fabrication procedure via the sol-gel method is facile and gives a good yield of nanoparticles. They are characterized by FTIR, UV, SEM, EDX, and XRD. Pristine yttrium iron garnet particles are also synthesized for comparison, where the electrochemical behaviors of varying electrodes are analyzed via cyclic voltammetry (CV). The activity of metformin at varying concentrations and pH is investigated via differential pulse voltammetry (DPV), and the sensor generates excellent results for metformin detection. Under optimum conditions and at a working potential of 0.85 V (vs. Ag/AgCl/3.0 M KCl), the linear range and limit of detection (LOD) obtained through the calibration curve are estimated as 0-60 µM and 0.04 µM, respectively. The fabricated sensor is selective for metformin and depicts a blind response toward interfering species. The optimized system is applied to directly measure MET in buffers and serum samples of T2DM patients.

20.
J Biomol Struct Dyn ; 41(18): 9177-9192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36305195

RESUMO

Artificial intelligence (AI) development imitates the workings of the human brain to comprehend modern problems. The traditional approaches such as high throughput screening (HTS) and combinatorial chemistry are lengthy and expensive to the pharmaceutical industry as they can only handle a smaller dataset. Deep learning (DL) is a sophisticated AI method that uses a thorough comprehension of particular systems. The pharmaceutical industry is now adopting DL techniques to enhance the research and development process. Multi-oriented algorithms play a crucial role in the processing of QSAR analysis, de novo drug design, ADME evaluation, physicochemical analysis, preclinical development, followed by clinical trial data precision. In this study, we investigated the performance of several algorithms, including deep neural networks (DNN), convolutional neural networks (CNN) and multi-task learning (MTL), with the aim of generating high-quality, interpretable big and diverse databases for drug design and development. Studies have demonstrated that CNN, recurrent neural network and deep belief network are compatible, accurate and effective for the molecular description of pharmacodynamic properties. In Covid-19, existing pharmacological compounds has also been repurposed using DL models. In the absence of the Covid-19 vaccine, remdesivir and oseltamivir have been widely employed to treat severe SARS-CoV-2 infections. In conclusion, the results indicate the potential benefits of employing the DL strategies in the drug discovery process.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA