Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 102996, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764520

RESUMO

SOX2 and SOX15 are Sox family transcription factors enriched in embryonic stem cells (ESCs). The role of SOX2 in activating gene expression programs essential for stem cell self-renewal and acquisition of pluripotency during somatic cell reprogramming is well-documented. However, the contribution of SOX15 to these processes is unclear and often presumed redundant with SOX2 largely because overexpression of SOX15 can partially restore self-renewal in SOX2-deficient ESCs. Here, we show that SOX15 contributes to stem cell maintenance by cooperating with ESC-enriched transcriptional coactivators to ensure optimal expression of pluripotency-associated genes. We demonstrate that SOX15 depletion compromises reprogramming of fibroblasts to pluripotency which cannot be compensated by SOX2. Ectopic expression of SOX15 promotes the reversion of a postimplantation, epiblast stem cell state back to a preimplantation, ESC-like identity even though SOX2 is expressed in both cell states. We also uncover a role of SOX15 in lineage specification, by showing that loss of SOX15 leads to defects in commitment of ESCs to neural fates. SOX15 promotes neural differentiation by binding to and activating a previously uncharacterized distal enhancer of a key neurogenic regulator, Hes5. Together, these findings identify a multifaceted role of SOX15 in induction and maintenance of pluripotency and neural differentiation.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007882

RESUMO

Obesity-induced adipocyte apoptosis promotes inflammation and insulin resistance. Src homology domain-containing inositol 5'-phosphatase 1 (SHIP1) is a key factor of apoptosis and inflammation. However, the role of SHIP1 in obesity-induced adipocyte apoptosis and autophagy is unclear. We found that diet-induced obesity (DIO) mice have significantly greater crown-like structures and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL)-positive cells than ob/ob or control mice. Using RNA sequencing (RNA-seq) analysis, we identified that the apoptosis- and inflammation-related gene Ship1 is upregulated in DIO and ob/ob mice compared with control mice. In particular, DIO mice had more SHIP1-positive macrophages and lysosomal-associated membrane protein 1 (LAMP1) as well as a higher B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio compared with ob/ob or control mice. Furthermore, caloric restriction attenuated adipose tissue inflammation, apoptosis, and autophagy by reversing increases in SHIP1-associated macrophages, Bax/Bcl2-ratio, and autophagy in DIO and ob/ob mice. These results demonstrate that DIO, not ob/ob, aggravates adipocyte inflammation, apoptosis, and autophagy due to differential SHIP1 expression. The evidence of decreased SHIP1-mediated inflammation, apoptosis, and autophagy indicates new therapeutic approaches for obesity-induced chronic inflammatory diseases.


Assuntos
Inflamação/genética , Obesidade/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/patologia , Animais , Apoptose/genética , Autofagia/genética , Dieta Hiperlipídica , Humanos , Inflamação/patologia , Resistência à Insulina/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Obesos , Obesidade/patologia
3.
Biochem Biophys Res Commun ; 508(1): 123-129, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471862

RESUMO

Hypothalamic inflammation has been known as a contributor to high-fat diet (HFD)-induced insulin resistance and obesity. Myeloid-specific sirtuin 1 (SIRT1) deletion aggravates insulin resistance and hypothalamic inflammation in HFD-fed mice. Neurogranin, a calmodulin-binding protein, is expressed in the hypothalamus. However, the effects of myeloid SIRT1 deletion on hypothalamic neurogranin has not been fully clarified. To investigate the effect of myeloid SIRT1 deletion on food intake and hypothalamic neurogranin expression, mice were fed a HFD for 20 weeks. Myeloid SIRT1 knockout (KO) mice exhibited higher food intake, weight gain, and lower expression of anorexigenic proopiomelanocortin in the arcuate nucleus than WT mice. In particular, KO mice had lower ventromedial hypothalamus (VMH)-specific neurogranin expression. However, SIRT1 deletion reduced HFD-induced hypothalamic neurogranin. Furthermore, hypothalamic phosphorylated AMPK and parvalbumin protein levels were also lower in HFD-fed KO mice than in HFD-fed WT mice. Thus, these findings suggest that myeloid SIRT1 deletion affects food intake through VMH-specific neurogranin-mediated AMPK signaling and hypothalamic inflammation in mice fed a HFD.


Assuntos
Hipotálamo/metabolismo , Células Mieloides/metabolismo , Neurogranina/metabolismo , Sirtuína 1/deficiência , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Sinalização do Cálcio , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos , Expressão Gênica , Inflamação/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Opiomelanocortina/metabolismo , Sirtuína 1/genética , Núcleo Hipotalâmico Ventromedial/metabolismo
4.
Korean J Physiol Pharmacol ; 23(5): 335-344, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31496871

RESUMO

Obesity causes inflammation and impairs thermogenic functions in brown adipose tissue (BAT). The adipokine lipocalin 2 (LCN2) has been implicated in inflammation and obesity. Herein, we investigated the protective effects of caloric restriction (CR) on LCN2-mediated inflammation and oxidative stress in the BAT of high-fat diet (HFD)-fed mice. Mice were fed a HFD for 20 weeks and then either continued on the HFD or subjected to CR for the next 12 weeks. CR led to the browning of the white fat-like phenotype in HFD-fed mice. Increased expressions of LCN2 and its receptor in the BAT of HFD-fed mice were significantly attenuated by CR. Additionally, HFD+CR-fed mice had fewer neutrophils and macrophages expressing LCN2 and iron-positive cells than HFD-fed mice. Further, oxidative stress and mitochondrial fission induced by a HFD were also significantly attenuated by CR. Our findings indicate that the protective effects of CR on inflammation and oxidative stress in the BAT of obese mice may be associated with regulation of LCN2.

5.
Infect Chemother ; 55(1): 99-104, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37021427

RESUMO

The immunogenicity of a heterologous vaccination regimen consisting of ChAdOx1 nCoV-19 (a chimpanzee adenovirus-vectored vaccine) followed by mRNA-1273 (a lipid-nanoparticle-encapsulated mRNA-based vaccine) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), specifically the omicron variant (B.1.1.529), is poorly studied. The aim of this study was to evaluate the neutralizing antibody activity and immunogenicity of heterologous ChAdOx1 nCoV-19 and mRNA-1273 prime-boost vaccination against wild-type (BetaCoV/Korea/KCDC03/2020), alpha, beta, gamma, delta, and omicron variants of SARS-CoV-2 in Korea. A 50% neutralizing dilution (ND50) titer was determined in serum samples using the plaque reduction neutralization test. Antibody titer decreased significantly at 3 months compared with that at 2 weeks after the 2nd dose. On comparing the ND50 titers for the above-mentioned variants of concerns, it was observed that the ND50 titer for the omicron variant was the lowest. This study provides insights into cross-vaccination effects and can be useful for further vaccination strategies in Korea.

6.
Immune Netw ; 23(4): e33, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37670807

RESUMO

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.

7.
World J Stem Cells ; 13(5): 416-438, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34136073

RESUMO

Biological reactions require self-assembly of factors in the complex cellular milieu. Recent evidence indicates that intrinsically disordered, low-complexity sequence domains (LCDs) found in regulatory factors mediate diverse cellular processes from gene expression to DNA repair to signal transduction, by enriching specific biomolecules in membraneless compartments or hubs that may undergo liquid-liquid phase separation (LLPS). In this review, we discuss how embryonic stem cells take advantage of LCD-driven interactions to promote cell-specific transcription, DNA damage response, and DNA repair. We propose that LCD-mediated interactions play key roles in stem cell maintenance and safeguarding genome integrity.

8.
Sci Adv ; 7(44): eabk2775, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714667

RESUMO

OCT4 and SOX2 confer pluripotency by recruiting coactivators to activate stem cell­specific transcription. However, the composition of coactivator complexes and their roles in maintaining stem cell fidelity remain unclear. Here, we report the ATP-binding cassette subfamily F member 1 (ABCF1) as a coactivator for OCT4/SOX2 critical for stem cell self-renewal. The intrinsically disordered low-complexity domain (LCD) of ABCF1 contributes to phase separation in vitro and transcriptional activation of pluripotency genes by mediating multivalent interactions with SOX2 and co-dependent coactivators XPC and DKC1. These LCD-driven transcription factor­coactivator interactions critical for pluripotency gene expression are disrupted by DNA damage, likely due to LCD-dependent binding of ABCF1 to damage-generated intracellular DNA fragments instead of SOX2. This study identifies a transcriptional coactivator that uses its LCD to form selective multivalent interactions to regulate stem cell self-renewal and exit from pluripotency when genome integrity is compromised.

9.
FEBS J ; 288(9): 2888-2910, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33205541

RESUMO

Poly (ADP-ribose) polymerase 1 (PARP1) and polycomb-repressive complex 2 (PRC2) are each known for their individual roles in cancer, but their cooperative roles have only been studied in the DNA damage repair process in the context of BRCA-mutant cancers. Here, we show that simultaneous inhibition of PARP1 and PRC2 in the MDA-MB-231 BRCA-proficient triple-negative breast cancer (TNBC) cell line leads to a synthetic viability independent of the mechanisms of DNA damage repair. Specifically, we find that either genetic depletion or pharmacological inhibition of both PARP1 and PRC2 can accelerate tumor growth rate. We attribute this to modifications in the tumor microenvironment (TME) that are induced by double-depleted breast cancer cells, such as promoting intratumoral angiogenesis and increasing the proportion of tumor-promoting type 2 (M2) macrophages. These changes subsequently inhibit cell death and promote proliferation. Mechanistically, we find that PARP1 and PRC2 double depletion induces not only a basal activation of the NF-κB pathway but also a maximal activation of NF-κB within the TME in response to external stimuli such as hypoxia and the presence of macrophages. In summary, our study reveals an unprecedented synthetic viable interaction between PARP1 and PRC2 in BRCA-proficient TNBC and identifies NF-κB as the downstream mediator. DATABASE: RNA-seq data are available in the GEO databases under the accession GSE142769.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Poli(ADP-Ribose) Polimerase-1/genética , Complexo Repressor Polycomb 2/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Proteína BRCA1/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Antioxidants (Basel) ; 10(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064680

RESUMO

Obesity and insulin resistance accelerate aging-related sarcopenia, which is associated with iron load and oxidative stress. Lipocalin-2 (LCN2) is an iron-binding protein that has been associated with skeletal muscle regeneration, but details regarding its role in obese sarcopenia remain unclear. Here, we report that elevated LCN2 levels in skeletal muscle are linked to muscle atrophy-related inflammation and oxidative stress in leptin-deficient ob/ob mice. RNA sequencing analyses indicated the LCN2 gene expression is enhanced in skeletal muscle of ob/ob mice with sarcopenia. In addition to muscular iron accumulation in ob/ob mice, expressions of iron homeostasis-related divalent metal transporter 1, ferritin, and hepcidin proteins were increased in ob/ob mice compared to lean littermates, whereas expressions of transferrin receptor and ferroportin were reduced. Collectively, these findings demonstrate that LCN2 functions as a potent proinflammatory factor in skeletal muscle in response to obesity-related sarcopenia and is thus a therapeutic candidate target for sarcopenia treatment.

11.
Pharmaceutics ; 12(2)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079069

RESUMO

Glucagon-like peptide 1 (GLP-1) mimetics have been approved as an adjunct therapy for glycemic control in type 2 diabetic patients for the increased insulin secretion under hyperglycemic conditions. Recently, it is reported that such agents elicit neuroprotective effects against diabetes-associated cognitive decline. However, there is an issue of poor compliance by multiple daily subcutaneous injections for sufficient glycemic control due to their short duration, and neuroprotective actions were not fully studied, yet. In this study, using the prepared exendin-4 fusion protein agent, we investigated the pharmacokinetic profile and the role of this GLP-1 mimetics on memory deficits in a high-fat diet (HFD)/streptozotocin (STZ) mouse model of type 2 diabetic mellitus. After induction of diabetes, mice were administered weekly by intraperitoneal injection of GLP-1 mimetics for 6 weeks. This treatment reversed HFD/STZ-induced metabolic symptoms of increased body weight, hyperglycemia, and hepatic steatosis. Furthermore, the impaired cognitive performance of diabetic mice was significantly reversed by GLP-1 mimetics. GLP-1 mimetic treatment also reversed decreases in GLP-1/GLP-1 receptor expression levels in both the pancreas and hippocampus of diabetic mice; increases in hippocampal inflammation, mitochondrial fission, and calcium-binding protein levels were also reversed. These findings suggest that GLP-1 mimetics are promising agents for both diabetes and neurodegenerative diseases that are associated with increased GLP-1 expression in the brain.

12.
J Neuropathol Exp Neurol ; 79(5): 530-541, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32296847

RESUMO

Obesity causes brain injuries with inflammatory and structural changes, leading to neurodegeneration. Although increased circulating lipocalin 2 (LCN2) level has been implicated in neurodegenerative diseases, the precise mechanism of neurodegeneration in obesity is not clear. Here, we investigated whether LCN2-mediated signaling promotes neurodegeneration in the hippocampus of leptin-deficient ob/ob mice, which are characterized by obesity, insulin resistance, systemic inflammation, and neuroinflammation. In particular, there was significant upregulation of both LCN2 and matrix metalloproteinase 9 levels from serum and hippocampus in ob/ob mice. Using RNA-seq analysis, we found that neurodegeneration- sortilin-related receptor 1 (Sorl1) and brain-derived neurotrophic factor (Bdnf) genes were significantly reduced in the hippocampus of ob/ob mice. We additionally found that the endosome-related WD repeat and FYVE-domain-containing 1 (Wdfy1) gene were upregulated in ob/ob mice. In particular, iron overload-related mitochondrial ferritin and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) proteins were increased in the hippocampus of ob/ob. Thus, these findings indicate that iron-binding protein LCN2-mediated oxidative stress promotes neurodegeneration in ob/ob mice.


Assuntos
Encefalite/metabolismo , Hipocampo/metabolismo , Ferro/metabolismo , Lipocalina-2/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Animais , Encefalite/complicações , Encefalite/patologia , Expressão Gênica , Hipocampo/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/complicações , Obesidade/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
13.
Sci Rep ; 10(1): 7176, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346034

RESUMO

Leptin-deficient and leptin-resistant mice manifest obesity, insulin resistance, and left ventricular hypertrophy (LVH); however, LVH's mechanisms are not fully understood. Cardiac iron dysregulation has been recently implicated in cardiomyopathy. Here we investigated the protective effects of caloric restriction on cardiac remodeling in impaired leptin signaling obese mice. RNA-seq analysis was performed to assess the differential gene expressions in the heart of wild-type and ob/ob mice. In particular, to investigate the roles of caloric restriction on iron homeostasis-related gene expressions, 10-week-old ob/ob and db/db mice were assigned to ad libitum or calorie-restricted diets for 12 weeks. Male ob/ob mice exhibited LVH, cardiac inflammation, and oxidative stress. Using RNA-seq analysis, we identified that an iron uptake-associated gene, transferrin receptor, was upregulated in obese ob/ob mice with LVH. Caloric restriction attenuated myocyte hypertrophy, cardiac inflammation, fibrosis, and oxidative stress in ob/ob and db/db mice. Furthermore, we found that caloric restriction reversed iron homeostasis-related lipocalin 2, divalent metal transporter 1, transferrin receptor, ferritin, ferroportin, and hepcidin expressions in the heart of ob/ob and db/db mice. These findings demonstrate that the cardioprotective effects of caloric restriction result from the cellular regulation of iron homeostasis, thereby decreasing oxidative stress, inflammation, and cardiac remodeling. We suggest that decreasing iron-mediated oxidative stress and inflammation offers new therapeutic approaches for obesity-induced cardiomyopathy.


Assuntos
Restrição Calórica , Hipertrofia Ventricular Esquerda , Ferro/metabolismo , Leptina/metabolismo , Estresse Oxidativo , Transdução de Sinais , Animais , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Obesos
14.
Stem Cell Res Ther ; 11(1): 55, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054514

RESUMO

BACKGROUND: In a number of disease processes, the body is unable to repair injured tissue, promoting the need to develop strategies for tissue repair and regeneration, including the use of cellular therapeutics. Trophoblast stem cells (TSCs) are considered putative stem cells as they differentiate into other subtypes of trophoblast cells. To identify cells for future therapeutic strategies, we investigated whether TSCs have properties of stem/progenitor cells including self-renewal and the capacity to differentiate into parenchymal cells of fetal organs, in vitro and in vivo. METHODS: TSCs were isolated using anti-CD117 micro-beads, from embryonic day 18.5 placentas. In vitro, CD117+ TSCs were cultured, at a limiting dilution in growth medium for the development of multicellular clones and in specialized medium for differentiation into lung epithelial cells, cardiomyocytes, and retinal photoreceptor cells. CD117+ TSCs were also injected in utero into lung, heart, and the sub-retinal space of embryonic day 13.5 fetuses, and the organs were harvested for histological assessment after a natural delivery. RESULTS: We first identified CD117+ cells within the labyrinth zone and chorionic basal plate of murine placentas in late pregnancy, embryonic day 18.5. CD117+ TSCs formed multicellular clones that remained positive for CD117 in vitro, consistent with self-renewal properties. The clonal cells demonstrated multipotency, capable of differentiating into lung epithelial cells (endoderm), cardiomyocytes (mesoderm), and retinal photoreceptor cells (ectoderm). Finally, injection of CD117+ TSCs in utero into lungs, hearts, and the sub-retinal spaces of fetuses resulted in their engraftment on day 1 after birth, and the CD117+ TSCs differentiated into lung alveolar epithelial cells, heart cardiomyocytes, and retina photoreceptor cells, corresponding with the organs in which they were injected. CONCLUSIONS: Our findings demonstrate that CD117+ TSCs have the properties of stem cells including clonogenicity, self-renewal, and multipotency. In utero administration of CD117+ TSCs engraft and differentiate into resident cells of the lung, heart, and retina during mouse development.


Assuntos
Imuno-Histoquímica/métodos , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Animais , Diferenciação Celular , Camundongos
15.
Artigo em Inglês | MEDLINE | ID: mdl-31739478

RESUMO

In this study, we looked into the association between the diagnosis of metabolic syndrome (MetS) and nutritional label awareness. This study used data from the Korea National Health and Nutritional Examination Survey (KNHANES) for the years 2007 to 2015. The study population consisted of a total of 41,667 Koreans of which 11,401 (27.4%) were diagnosed with metabolic syndrome and 30,266 (72.6%) were not. Groups not using nutritional labeling had a 24% increase in odds risk (OR: 1.24, 95% CI 1.14-1.35) of MetS compared to groups using nutritional labeling. Use of nutritional labeling was associated with all components of MetS. Central obesity showed the highest increase in odds risk (OR: 1.23, 95% CI 1.13-1.35) and high blood pressure showed the lowest increase in odds risk (OR: 1.11, 95% CI 1.02-1.20). Subgroup analysis revealed that statistically significant factors were smoking status, drinking status and stress status. Groups that smoke, groups that do not drink and groups with high stress were more vulnerable to MetS when not using nutritional labeling. People not using food labels tends to develop metabolic syndromes more than people using foods labels. In the subgroup analysis, drinking status, smoking status and stress status were significant factors.


Assuntos
Rotulagem de Alimentos , Síndrome Metabólica/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/epidemiologia , Feminino , Inquéritos Epidemiológicos , Humanos , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Inquéritos Nutricionais , Obesidade/epidemiologia , República da Coreia/epidemiologia , Fumar/epidemiologia , Adulto Jovem
16.
Sci Rep ; 7(1): 13174, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030610

RESUMO

Angiotensin-converting enzyme (ACE) is an evolutionarily conserved peptidyl dipeptidase. Mammalian ACE converts angiotensin I to the active vasoconstrictor angiotensin II, thus playing a critical role for homeostasis of the renin-angiotensin system. In Drosophila, the ACE homolog Ance is expressed in specific regions of developing organs, but its regulatory mechanism has not been identified. Here we provide evidence that Ance expression is regulated by a combination of Mad and Pannier (Pnr) in imaginal discs. We demonstrate that Ance expression in eye and wing discs depends on Dpp signaling. The Mad binding site of Ance regulatory region is essential for Ance expression. Ance expression in imaginal discs is also regulated by the GATA family transcription factor Pnr. Pnr directly regulates Ance expression by binding to a GATA site of Ance enhancer. In addition, Pnr and Mad physically and genetically interact. Ance null mutants are morphologically normal but show genetic interaction with dpp mutants. Furthermore, we show that human SMAD2 and GATA4 physically interact and ACE expression in HEK293 cells is regulated by SMAD2 and GATA4. Taken together, this study reveals a cooperative mechanism of Ance regulation by Mad and Pnr. Our data also suggest a conserved transcriptional regulation of human ACE.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Discos Imaginais/metabolismo , Peptidil Dipeptidase A/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Fator de Transcrição GATA4/metabolismo , Células HEK293 , Humanos , Peptidil Dipeptidase A/genética , Proteína Smad2/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA