Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Genes Dev ; 34(17-18): 1177-1189, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32792353

RESUMO

Dysregulation of the ubiquitin-proteasomal system (UPS) enables pathogenic accumulation of disease-driving proteins in neurons across a host of neurological disorders. However, whether and how the UPS contributes to oligodendrocyte dysfunction and repair after white matter injury (WMI) remains undefined. Here we show that the E3 ligase VHL interacts with Daam2 and their mutual antagonism regulates oligodendrocyte differentiation during development. Using proteomic analysis of the Daam2-VHL complex coupled with conditional genetic knockout mouse models, we further discovered that the E3 ubiquitin ligase Nedd4 is required for developmental myelination through stabilization of VHL via K63-linked ubiquitination. Furthermore, studies in mouse demyelination models and white matter lesions from patients with multiple sclerosis corroborate the function of this pathway during remyelination after WMI. Overall, these studies provide evidence that a signaling axis involving key UPS components contributes to oligodendrocyte development and repair and reveal a new role for Nedd4 in glial biology.


Assuntos
Diferenciação Celular , Proteínas dos Microfilamentos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Regeneração Nervosa/genética , Doenças do Sistema Nervoso/genética , Oligodendroglia/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/genética , Doenças do Sistema Nervoso/fisiopatologia , Oligodendroglia/citologia , Estabilidade Proteica , Ubiquitinação/genética
2.
Cytotherapy ; 26(3): 266-275, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38231165

RESUMO

T cell receptor engineered T cell (TCR T) therapies have shown recent efficacy against certain types of solid metastatic cancers. However, to extend TCR T therapies to treat more patients across additional cancer types, new TCRs recognizing cancer-specific antigen targets are needed. Driver mutations in AKT1, ESR1, PIK3CA, and TP53 are common in patients with metastatic breast cancer (MBC) and if immunogenic could serve as ideal tumor-specific targets for TCR T therapy to treat this disease. Through IFN-γ ELISpot screening of in vitro expanded neopeptide-stimulated T cell lines from healthy donors and MBC patients, we identified reactivity towards 11 of 13 of the mutations. To identify neopeptide-specific TCRs, we then performed single-cell RNA sequencing of one of the T cell lines following neopeptide stimulation. Here, we identified an ESR1 Y537S specific T cell clone, clonotype 16, and an ESR1 Y537S/D538G dual-specific T cell clone, clonotype 21, which were HLA-B*40:02 and HLA-C*01:02 restricted, respectively. TCR Ts expressing these TCRs recognized and killed target cells pulsed with ESR1 neopeptides with minimal activity against ESR1 WT peptide. However, these TCRs failed to recognize target cells expressing endogenous mutant ESR1. To investigate the basis of this lack of recognition we performed immunopeptidomics analysis of a mutant-overexpressing lymphoblastoid cell line and found that the ESR1 Y537S neopeptide was not endogenously processed, despite binding to HLA-B*40:02 when exogenously pulsed onto the target cell. These results indicate that stimulation of T cells that likely derive from the naïve repertoire with pulsed minimal peptides may lead to the expansion of clones that recognize non-processed peptides, and highlights the importance of using methods that selectively expand T cells with specificity for antigens that are efficiently processed and presented.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Apresentação de Antígeno , Receptores de Antígenos de Linfócitos T , Mutação , Peptídeos , Antígenos HLA-B/genética
3.
Nature ; 556(7700): 249-254, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29615789

RESUMO

Alterations in both cell metabolism and transcriptional programs are hallmarks of cancer that sustain rapid proliferation and metastasis 1 . However, the mechanisms that control the interaction between metabolic reprogramming and transcriptional regulation remain unclear. Here we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4) regulates transcriptional reprogramming by activating the oncogenic steroid receptor coactivator-3 (SRC-3). We used a kinome-wide RNA interference-based screening method to identify potential kinases that modulate the intrinsic SRC-3 transcriptional response. PFKFB4, a regulatory enzyme that synthesizes a potent stimulator of glycolysis 2 , is found to be a robust stimulator of SRC-3 that coregulates oestrogen receptor. PFKFB4 phosphorylates SRC-3 at serine 857 and enhances its transcriptional activity, whereas either suppression of PFKFB4 or ectopic expression of a phosphorylation-deficient Ser857Ala mutant SRC-3 abolishes the SRC-3-mediated transcriptional output. Functionally, PFKFB4-driven SRC-3 activation drives glucose flux towards the pentose phosphate pathway and enables purine synthesis by transcriptionally upregulating the expression of the enzyme transketolase. In addition, the two enzymes adenosine monophosphate deaminase-1 (AMPD1) and xanthine dehydrogenase (XDH), which are involved in purine metabolism, were identified as SRC-3 targets that may or may not be directly involved in purine synthesis. Mechanistically, phosphorylation of SRC-3 at Ser857 increases its interaction with the transcription factor ATF4 by stabilizing the recruitment of SRC-3 and ATF4 to target gene promoters. Ablation of SRC-3 or PFKFB4 suppresses breast tumour growth in mice and prevents metastasis to the lung from an orthotopic setting, as does Ser857Ala-mutant SRC-3. PFKFB4 and phosphorylated SRC-3 levels are increased and correlate in oestrogen receptor-positive tumours, whereas, in patients with the basal subtype, PFKFB4 and SRC-3 drive a common protein signature that correlates with the poor survival of patients with breast cancer. These findings suggest that the Warburg pathway enzyme PFKFB4 acts as a molecular fulcrum that couples sugar metabolism to transcriptional activation by stimulating SRC-3 to promote aggressive metastatic tumours.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Fosfofrutoquinase-2/metabolismo , Ativação Transcricional , Fator 4 Ativador da Transcrição/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glicólise , Humanos , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos , Metástase Neoplásica , Via de Pentose Fosfato , Fosforilação , Fosfosserina/metabolismo , Prognóstico , Purinas/biossíntese , Purinas/metabolismo , Interferência de RNA , Receptores de Estrogênio/metabolismo , Transcetolase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
FASEB J ; 36(3): e22186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120261

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder, and there is a pressing need to identify disease-modifying factors and devise interventional strategies. The circadian clock, our intrinsic biological timer, orchestrates various cellular and physiological processes including gene expression, sleep, and neuroinflammation; conversely, circadian dysfunctions are closely associated with and/or contribute to AD hallmarks. We previously reported that the natural compound Nobiletin (NOB) is a clock-enhancing modulator that promotes physiological health and healthy aging. In the current study, we treated the double transgenic AD model mice, APP/PS1, with NOB-containing diets. NOB significantly alleviated ß-amyloid burden in both the hippocampus and the cortex, and exhibited a trend to improve cognitive function in these mice. While several systemic parameters for circadian wheel-running activity, sleep, and metabolism were unchanged, NOB treatment showed a marked effect on the expression of clock and clock-controlled AD gene expression in the cortex. In accordance, cortical proteomic profiling demonstrated circadian time-dependent restoration of the protein landscape in APP/PS1 mice treated with NOB. More importantly, we found a potent efficacy of NOB to inhibit proinflammatory cytokine gene expression and inflammasome formation in the cortex, and immunostaining further revealed a specific effect to diminish astrogliosis, but not microgliosis, by NOB in APP/PS1 mice. Together, these results underscore beneficial effects of a clock modulator to mitigate pathological and cognitive hallmarks of AD, and suggest a possible mechanism via suppressing astrogliosis-associated neuroinflammation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Flavonas/farmacologia , Gliose/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Citocinas/genética , Citocinas/metabolismo , Flavonas/uso terapêutico , Gliose/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Fármacos Neuroprotetores/uso terapêutico
5.
EMBO Rep ; 22(12): e53200, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34633730

RESUMO

Astrocytes display extraordinary morphological complexity that is essential to support brain circuit development and function. Formin proteins are key regulators of the cytoskeleton; however, their role in astrocyte morphogenesis across diverse brain regions and neural circuits is unknown. Here, we show that loss of the formin protein Daam2 in astrocytes increases morphological complexity in the cortex and olfactory bulb, but elicits opposing effects on astrocytic calcium dynamics. These differential physiological effects result in increased excitatory synaptic activity in the cortex and increased inhibitory synaptic activity in the olfactory bulb, leading to altered olfactory behaviors. Proteomic profiling and immunoprecipitation experiments identify Slc4a4 as a binding partner of Daam2 in the cortex, and combined deletion of Daam2 and Slc4a4 restores the morphological alterations seen in Daam2 mutants. Our results reveal new mechanisms regulating astrocyte morphology and show that congruent changes in astrocyte morphology can differentially influence circuit function.


Assuntos
Astrócitos , Proteínas dos Microfilamentos/genética , Proteínas rho de Ligação ao GTP/genética , Forminas , Morfogênese , Bulbo Olfatório/metabolismo , Proteômica , Simportadores de Sódio-Bicarbonato
6.
Biochem Biophys Res Commun ; 534: 864-870, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168190

RESUMO

Bile acids have recently emerged as key metabolic hormones with beneficial impacts in multiple metabolic diseases. We previously discovered that hepatic bile acid overload distally modulates glucose and fatty acid metabolism in adipose tissues to exert anti-obesity effects. However, the detailed mechanisms that explain the salutary effects of serum bile acid elevation remain unclear. Here, proteomic profiling identified a new hepatokine, Orosomucoid (ORM) that governs liver-adipose tissue crosstalk. Hepatic ORMs were highly induced by both genetic and dietary bile acid overload. To address the direct metabolic effects of ORM, purified ORM proteins were administered during adipogenic differentiation of 3T3-L1 cells and mouse stromal vascular fibroblasts. ORM suppressed adipocyte differentiation and strongly inhibited gene expression of adipogenic transcription factors such as C/EBPß, KLF5, C/EBPα, and PPARγ. Taken together, our data clearly suggest that bile acid-induced ORM secretion from the liver blocks adipocyte differentiation, potentially linked to anti-obesity effect of bile acids.


Assuntos
Adipogenia , Ácidos e Sais Biliares/metabolismo , Orosomucoide/metabolismo , Células 3T3-L1 , Animais , Bovinos , Fibroblastos/metabolismo , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Orosomucoide/análise , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Proteômica
7.
Stem Cells ; 38(11): 1479-1491, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32627901

RESUMO

The phenotypic and functional heterogeneity of the mouse prostate epithelial cell lineages remains incompletely characterized. We show that the Sca-1+ luminal cells at the mouse proximal prostate express Sox2. These cells are replicative quiescent, castration resistant, and do not possess secretory function. We use the Probasin-CreERT2 and Sox2-CreERT2 models in concert with a fluorescent reporter line to label the Sca-1- and Sca-1+ luminal cells, respectively. By a lineage tracing approach, we show that the two luminal cell populations are independently sustained. Sox2 is dispensable for the maintenance of the Sca-1+ luminal cells but is essential for their facultative bipotent differentiation capacity. The Sca-1+ luminal cells share molecular features with the human TACSTD2+ luminal cells. This study corroborates the heterogeneity of the mouse prostate luminal cell lineage and shows that the adult mouse prostate luminal cell lineage is maintained by distinct cellular entities rather than a single progenitor population.


Assuntos
Antígenos Ly/genética , Linhagem da Célula/genética , Proteínas de Membrana/genética , Neoplasias da Próstata/genética , Animais , Humanos , Masculino , Camundongos , Neoplasias da Próstata/patologia
8.
Mol Ther ; 28(7): 1628-1644, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380062

RESUMO

Accumulating evidence indicates that mesenchymal stem/stromal cell-derived extracellular vesicles (MSC-EVs) exhibit immunomodulatory effects by delivering therapeutic RNAs and proteins; however, the molecular mechanism underlying the EV-mediated immunomodulation is not fully understood. In this study, we found that EVs from early-passage MSCs had better immunomodulatory potency than did EVs from late-passage MSCs in T cell receptor (TCR)- or Toll-like receptor 4 (TLR4)-stimulated splenocytes and in mice with ocular Sjögren's syndrome. Moreover, MSC-EVs were more effective when produced from 3D culture of the cells than from the conventional 2D culture. Comparative molecular profiling using proteomics and microRNA sequencing revealed the enriched factors in MSC-EVs that were functionally effective in immunomodulation. Among them, manipulation of transforming growth factor ß1 (TGF-ß1), pentraxin 3 (PTX3), let-7b-5p, or miR-21-5p levels in MSCs significantly affected the immunosuppressive effects of their EVs. Furthermore, there was a strong correlation between the expression levels of TGF-ß1, PTX3, let-7b-5p, or miR-21-5p in MSC-EVs and their suppressive function. Therefore, our comparative strategy identified TGF-ß1, PTX3, let-7b-5p, or miR-21-5p as key molecules mediating the therapeutic effects of MSC-EVs in autoimmune disease. These findings would help understand the molecular mechanism underlying EV-mediated immunomodulation and provide functional biomarkers of EVs for the development of robust EV-based therapies.


Assuntos
Proteína C-Reativa/genética , Vesículas Extracelulares/transplante , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Componente Amiloide P Sérico/genética , Síndrome de Sjogren-Larsson/terapia , Fator de Crescimento Transformador beta1/genética , Animais , Proteína C-Reativa/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteômica , Inoculações Seriadas , Componente Amiloide P Sérico/metabolismo , Síndrome de Sjogren-Larsson/genética , Síndrome de Sjogren-Larsson/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
9.
J Proteome Res ; 18(10): 3715-3730, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31442056

RESUMO

Ligand binding to the cell surface receptors initiates signaling cascades that are commonly transduced through a protein-protein interaction (PPI) network to activate a plethora of response pathways. However, tools to capture the membrane PPI network are lacking. Here, we describe a cross-linking-aided mass spectrometry workflow for isolation and identification of signal-dependent epidermal growth factor receptor (EGFR) proteome. We performed protein cross-linking in cell culture at various time points following EGF treatment, followed by immunoprecipitation of endogenous EGFR and analysis of the associated proteins by quantitative mass spectrometry. We identified 140 proteins with high confidence during a 2 h time course by data-dependent acquisition and further validated the results by parallel reaction monitoring. A large proportion of proteins in the EGFR proteome function in endocytosis and intracellular protein transport. The EGFR proteome was highly dynamic with distinct temporal behavior; 10 proteins that appeared in all time points constitute the core proteome. Functional characterization showed that loss of the FYVE domain-containing proteins altered the EGFR intracellular distribution but had a minor effect on EGFR proteome or signaling. Thus, our results suggest that the EGFR proteome include functional regulators that influence EGFR signaling and bystanders that are captured as the components of endocytic vesicles. The high-resolution spatiotemporal information of these molecules facilitates the delineation of many pathways that could determine the strength and duration of the signaling, as well as the location and destination of the receptor.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Transdução de Sinais , Linhagem Celular , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Imunoprecipitação , Espectrometria de Massas , Transporte Proteico , Fatores de Tempo , Fluxo de Trabalho
10.
Mol Cell Proteomics ; 16(4): 581-593, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28153913

RESUMO

Here, we present a mouse brain protein atlas that covers 17 surgically distinct neuroanatomical regions of the adult mouse brain, each less than 1 mm3 in size. The protein expression levels are determined for 6,500 to 7,500 gene protein products from each region and over 12,000 gene protein products for the entire brain, documenting the physiological repertoire of mouse brain proteins in an anatomically resolved and comprehensive manner. We explored the utility of our spatially defined protein profiling methods in a mouse model of Parkinson's disease. We compared the proteome from a vulnerable region (substantia nigra pars compacta) of wild type and parkinsonian mice with that of an adjacent, less vulnerable, region (ventral tegmental area) and identified several proteins that exhibited both spatiotemporal- and genotype-restricted changes. We validated the most robustly altered proteins using an alternative profiling method and found that these modifications may highlight potential new pathways for future studies. This proteomic atlas is a valuable resource that offers a practical framework for investigating the molecular intricacies of normal brain function as well as regional vulnerability in neurological diseases. All of the mouse regional proteome profiling data are published on line at http://mbpa.bprc.ac.cn/.


Assuntos
Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/metabolismo , Proteômica/métodos , Área Tegmentar Ventral/metabolismo , Animais , Mapeamento Encefálico , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Proteoma/análise
11.
Mol Cell Proteomics ; 16(4): 594-607, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28174230

RESUMO

Neurofibromin (NF1) is a well known tumor suppressor that is commonly mutated in cancer patients. It physically interacts with RAS and negatively regulates RAS GTPase activity. Despite the importance of NF1 in cancer, a high quality endogenous NF1 interactome has yet to be established. In this study, we combined clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene knock-out technology with affinity purification using antibodies against endogenous proteins, followed by mass spectrometry analysis, to sensitively and accurately detect NF1 protein-protein interactions in unaltered in vivo settings. Using this system, we analyzed endogenous NF1-associated protein complexes and identified 49 high-confidence candidate interaction proteins, including RAS and other functionally relevant proteins. Through functional validation, we found that NF1 negatively regulates mechanistic target of rapamycin signaling (mTOR) in a LAMTOR1-dependent manner. In addition, the cell growth and survival of NF1-deficient cells have become dependent on hyperactivation of the mTOR pathway, and the tumorigenic properties of these cells have become dependent on LAMTOR1. Taken together, our findings may provide novel insights into therapeutic approaches targeting NF1-deficient tumors.


Assuntos
Proteínas de Transporte/metabolismo , Edição de Genes/métodos , Neoplasias/metabolismo , Neurofibromina 1/metabolismo , Proteômica/métodos , Serina-Treonina Quinases TOR/metabolismo , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proliferação de Células , Sobrevivência Celular , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Espectrometria de Massas , Neoplasias/genética , Neurofibromina 1/genética , Mapas de Interação de Proteínas , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
12.
Pancreatology ; 18(1): 22-28, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29246689

RESUMO

OBJECTIVES: This study aims to evaluate the diagnostic value of magnetic resonance cholangiopancreatography (MRCP) in detecting common bile duct (CBD) stones in acute biliary pancreatitis (ABP). METHODS: The medical records of patients presenting with ABP from January 2008 to July 2013 were reviewed to assess the value of MRCP in detecting CBD stones in ABP. Endoscopic retrograde cholangiopancreatography (ERCP) was used as the reference standard to assess the diagnostic yield of MRCP in detecting choledocholithiasis. When ERCP was unavailable, intraoperative cholangiography or clinical follow-up was used as the reference standard. RESULTS: Seventy-eight patients who underwent MRCP were diagnosed with ABP, and thirty of the 78 patients (38%) were confirmed to have CBD stones per the study protocol. The sensitivity of MRCP in detecting CBD stones in ABP was 93.3% compared to 66.7% for abdominal CT (P < 0.008). The overall accuracy of MRCP in detecting choledocholithiasis was 85.9% compared to 74.0% for abdominal CT (P < 0.041). The area under the receiver operating characteristic curve (AUC) of MRCP in detecting CBD stones was 0.882, which was more accurate than the AUC of 0.727 for abdominal CT (P = 0.039). In 38 patients who underwent ERCP, the sensitivity and negative predictive value of MRCP in detecting CBD stones were both 100% regardless of the dilatation of the bile duct (≥7 mm versus < 7 mm). CONCLUSION: MRCP is an effective, noninvasive modality to detect CBD stones in ABP and can help identify patients who require ERCP.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Colangiopancreatografia por Ressonância Magnética , Coledocolitíase/diagnóstico por imagem , Cálculos Biliares/diagnóstico por imagem , Pancreatite/diagnóstico por imagem , Doença Aguda , Coledocolitíase/complicações , Humanos , Pancreatite/complicações , Estudos Retrospectivos
13.
FASEB J ; 30(1): 324-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26399788

RESUMO

Nonalcoholic fatty liver disease is associated with metabolic syndrome and has the unique characteristic of excess lipid accumulation in liver. G-protein-coupled receptor 119 (GPR119) is a promising target for type 2 diabetes. However, the role of GPR119 activation in hepatic steatosis and its precise mechanism has not been investigated. In primary cultured hepatocytes from wild-type and GPR119 knockout (KO) mice, expression of lipogenic enzymes was elevated in GPR119 KO hepatocytes. Treatment of hepatocytes and HepG2 cells with GPR119 agonists in phase 2 clinical trials (MBX-2982 [MBX] and GSK1292263) inhibited protein expression of both nuclear and total sterol regulatory element binding protein (SREBP)-1, a key lipogenesis transcription factor. Oral administration of MBX in mice fed a high-fat diet potently inhibited hepatic lipid accumulation and expression levels of SREBP-1 and lipogenesis-related genes, whereas the hepatic antilipogenesis effects of MBX were abolished in GPR119 KO mice. MBX activated AMPK and increased Ser-372 phosphorylation of SREBP-1c, an inhibitory form of SREBP-1c. Moreover, inhibition of AMPK recovered MBX-induced down-regulation of SREBP-1. These findings demonstrate for the first time that the GPR119 ligand alleviates hepatic steatosis by inhibiting SREBP-1-mediated lipogenesis in hepatocytes.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tetrazóis/farmacologia , Tiazóis/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Mesilatos/farmacologia , Mesilatos/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Tetrazóis/uso terapêutico , Tiazóis/uso terapêutico
14.
Biomed Chromatogr ; 30(12): 1963-1974, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27240299

RESUMO

To evaluate changes in tryptophan metabolism and discover diagnostic biomarkers for gastric cancer, a quantitative method was developed for tryptophan and its seven metabolites (indole-3-lactic acid, anthranilic acid, serotonin, nicotinic acid, kynurenic acid, kynurenine and 3-indoxyl sulfate) in both human serum and gastric juice using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Serum and gastric juice were prepared with a simple protein precipitation using aqueous 0.1% formic acid and acetonitrile. As a result, it was found that the kynurenine pathway of tryptophan metabolism was activated in gastric cancer and that the metabolic ratio of kynurenine/tryptophan, which reflects the enzyme activity of indoleamine-2,3-dioxygenase, was associated with the observed metabolic changes. Finally, the investigation of tryptophan metabolites, especially kynurenic acid, in serum and gastric juice might serve as biomarkers for gastric cancer. The findings in this study provide critical information of tryptophan metabolism which can be applied to a serum-based diagnostic test for gastric cancer.


Assuntos
Biomarcadores Tumorais/análise , Biomarcadores/sangue , Ácido Gástrico/metabolismo , Neoplasias Gástricas/metabolismo , Triptofano/metabolismo , Calibragem , Cromatografia Líquida , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Neoplasias Gástricas/diagnóstico , Espectrometria de Massas em Tandem , Triptofano/sangue
15.
Mol Pharmacol ; 88(2): 392-400, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26048958

RESUMO

Although ingenol 3,20-dibenzoate (IDB) is known as a selective novel protein kinase C (PKC) agonist, its biologic actions and underlying mechanisms remain incompletely understood. In this study, we identified IDB as a proliferative agent for an erythropoietin (EPO)-dependent cell line, UT-7/EPO, through the screening of a natural compound library. To clarify the underlying mechanism of IDB's EPO-like activities, we thoroughly analyzed the mutual relation between EPO and IDB in terms of in vitro and in vivo activities, signaling molecules, and a cellular receptor. IDB substantially induced the proliferation of UT-7/EPO cells, but not as much as EPO. IDB also lessened the anemia induced by 5-fluorouracil in an in vivo mouse model. Interestingly, IDB showed a synergistic effect on EPO at low concentration, but an antagonistic effect at higher concentration. Physical interaction and activation of PKCs by IDB- and EPO-competitive binding of IDB to EPO receptor (EPOR) explain these synergistic and antagonistic activities, respectively. Importantly, we addressed IDB's mechanism of action by demonstrating the direct binding of IDB to PKCs, and by identifying EPOR as a novel molecular target of IDB. Based on these dual targeting properties, IDB holds promise as a new small molecule modulator of EPO-related pathologic conditions.


Assuntos
Anemia/tratamento farmacológico , Diterpenos/administração & dosagem , Eritropoetina/genética , Receptores da Eritropoetina/antagonistas & inibidores , Anemia/induzido quimicamente , Animais , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Diterpenos/farmacologia , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Sinergismo Farmacológico , Humanos , Camundongos Endogâmicos C57BL , Mutação , Proteína Quinase C/metabolismo , Receptores da Eritropoetina/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
J Am Chem Soc ; 137(8): 3017-23, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25662739

RESUMO

Mitochondria are organelles that are readily susceptible to temperature elevation. We selectively delivered a coumarin-based fluorescent iron oxide nanoparticle, Mito-CIO, to the mitochondria. Upon 740 nm laser irradiation, the intracellular temperature of HeLa cells was elevated by 2.1 °C within 5 min when using Mito-CIO, and the treatment resulted in better hyperthermia and a more elevated cytotoxicity than HeLa cells treated with coumarin iron oxide (CIO), which was missing the mitochondrial targeting unit. We further confirmed these results in a tumor xenograft mouse model. To our knowledge, this is the first report of a near-infrared laser irradiation-induced hyperthermic particle targeted to mitochondria, enhancing the cytotoxicity in cancer cells. Our present work therefore may open a new direction in the development of photothermal therapeutics.


Assuntos
Hipertermia Induzida/métodos , Raios Infravermelhos/uso terapêutico , Mitocôndrias/metabolismo , Nanomedicina/métodos , Animais , Transporte Biológico , Transformação Celular Neoplásica , Cumarínicos/química , Compostos Férricos/química , Compostos Férricos/metabolismo , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/metabolismo
17.
Chem Res Toxicol ; 28(5): 872-85, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25860621

RESUMO

Drug-induced liver injury (DILI) via metabolic activation by drug-metabolizing enzymes, especially cytochrome P450 (CYP), is a major cause of drug failure and drug withdrawal. In this study, an in vitro model using HepG2 cells in combination with human liver microsomes was developed for the prediction of DILI. The cytotoxicity of cyclophosphamide, a model drug for bioactivation, was augmented in HepG2 cells cultured with microsomes in a manner dependent on exposure time, microsomal protein concentration, and NADPH. Experiments using pan- or isoform-selective CYP inhibitors showed that CYP2B6 and CYP3A4 are responsible for the bioactivation of cyclophosphamide. In a metabolite identification study employing LC-ESI-QTrap and LC-ESI-QTOF, cyclophosphamide metabolites including phosphoramide mustard, a toxic metabolite, were detected in HepG2 cells cultured with microsomes, but not without microsomes. The cytotoxic effects of acetaminophen and diclofenac were also potentiated by microsomes. The potentiation of acetaminophen cytotoxicity was dependent on CYP-dependent metabolism, and the augmentation of diclofenac cytotoxicity was not mediated by either CYP- or UDP-glucuronosyltransferase-dependent metabolism. The cytotoxic effects of leflunomide, nefazodone, and bakuchiol were attenuated by microsomes. The detoxication of leflunomide by microsomes was attributed to mainly CYP3A4-dependent metabolism. The protective effect of microsomes against nefazodone cytotoxicity was dependent on both CYP-mediated metabolism and nonspecific protein binding. Nonspecific protein binding but not CYP-dependent metabolism played a critical role in the attenuation of bakuchiol cytotoxicity. The present study suggests that HepG2 cells cultured with human liver microsomes can be a reliable model in which to predict DILI via bioactivation by drug metabolizing enzymes.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciclofosfamida/toxicidade , Fígado/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Antineoplásicos Alquilantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ciclofosfamida/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Microssomos Hepáticos/metabolismo , NADP/metabolismo
18.
Small ; 10(19): 3853-7, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24975778

RESUMO

An advanced optical activation of neural tissues is demonstrated using pulsed infrared light and plasmonic gold nanorods. Photothermal effect localized in plasma membrane triggers action potentials of in vivo neural tissues. Compared with conventional infrared stimulation, the suggested method can increase a neural responsivity and lower a threshold stimulation level significantly, thereby reducing a requisite radiant exposure and the concern of tissue damage.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotubos/química , Neurônios/patologia , Potenciais de Ação , Animais , Membrana Celular/metabolismo , Lasers , Masculino , Microscopia Eletrônica de Transmissão , Nanotecnologia , Neurônios/metabolismo , Óptica e Fotônica , Fotoquímica , Ratos , Ratos Sprague-Dawley , Espectrofotometria Infravermelho , Ressonância de Plasmônio de Superfície
19.
Opt Express ; 22(5): 5977-85, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663934

RESUMO

We demonstrate the proof-of-concept for developing a multi-color fluorescence imaging system based on plasmonic wavelength selection and double illumination by white light source. This technique is associated with fluorescence excitation by transmitted light via a diffraction of propagating surface plasmons. Since double illumination through both sides of isosceles triangle prism in the Kretschmann configuration enables multiple transmission beams of different wavelengths to interact with the specimen, our approach can be an alternative to conventional fluorescence detection owing to alignment stability and functional expandability. After fabricating a plasmonic wavelength splitter and integrating it with microscopic imaging system, we successfully confirm the performance by visualizing in vitro neuron cells labeled with green and red fluorescence dyes. The suggested method has a potential that it could be combined with plasmonic biosensor scheme to realize a multi-functional platform which allows imaging and sensing of biological samples at the same time.

20.
Appl Opt ; 53(10): 2152-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24787174

RESUMO

In this study, we investigated the performance improvement of a localized surface plasmon resonance (LSPR) biosensor by incorporating a metal-dielectric-metal (MDM) stack structure and subwavelength metallic nanograting. The numerical results showed that the LSPR substrate with a MDM stack can provide not only a better sensitivity by more than five times but also a notably improved signal quality. While the gold nanogratings on a gold film inevitably lead to a broad and shallow reflectance curve, the presence of a MDM stack can prevent propagating surface plasmons from interference by locally enhanced fields excited at the gold nanogratings, finally resulting in a strong and deep absorption band at resonance. Therefore, the proposed LSPR structure could potentially open a new possibility of enhanced detection for monitoring biomolecular interactions of very low molecular weights.


Assuntos
Biopolímeros/análise , Técnicas Biossensoriais/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teste de Materiais , Espalhamento de Radiação , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA