Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 164(1): 103-116, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240952

RESUMO

BACKGROUND & AIMS: Weight loss and exercise intervention have been reported to increase the interaction between Bacteroides spp and Akkermansiamuciniphila (Am), although the underlying mechanisms and consequences of the interaction remain unknown. METHODS: Using a healthy Korean twin cohort (n = 582), we analyzed taxonomic associations with host body mass index. B vulgatus strains were isolated from mice and human subjects to investigate the strain-specific effect of B vulgatus SNUG 40005 (Bvul) on obesity. The mechanisms underlying Am enrichment by Bvul administration were investigated by multiple experiments: (1) in vitro cross-feeding experiments, (2) construction of Bvul mutants with the N-acetylglucosaminidase gene knocked out, and (3) in vivo validation cohorts with different metabolites. Finally, metabolite profiling in mouse and human fecal samples was performed. RESULTS: An interaction between Bvul and Am was observed in lean subjects but was disrupted in obese subjects. The administration of Bvul to mice fed a high-fat diet decreased body weight, insulin resistance, and gut permeability. In particular, Bvul restored the abundance of Am, which decreased significantly after a long-term high-fat diet. A cross-feeding analysis of Am with cecal contents or Bvul revealed that Am enrichment was attributed to metabolites produced during mucus degradation by Bvul. The metabolome profile of mouse fecal samples identified N-acetylglucosamine as contributing to Am enrichment, which was confirmed by in vitro and in vivo experiments. Metabolite network analysis of the twin cohort found that lysine serves as a bridge between N-acetylglucosamine, Bvul, and Am. CONCLUSIONS: Strain-specific microbe-microbe interactions modulate the mucosal environment via metabolites produced during mucin degradation in the gut.


Assuntos
Acetilglucosamina , Akkermansia , Humanos , Camundongos , Animais , Bacteroides/genética , Obesidade/metabolismo , Dieta Hiperlipídica
2.
Nucleic Acids Res ; 48(5): 2401-2411, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31970401

RESUMO

Protein lysine acetylation, one of the most abundant post-translational modifications in eukaryotes, occurs in prokaryotes as well. Despite the evidence of lysine acetylation in bacterial RNA polymerases (RNAPs), its function remains unknown. We found that the housekeeping sigma factor (HrdB) was acetylated throughout the growth of an actinobacterium, Streptomyces venezuelae, and the acetylated HrdB was enriched in the RNAP holoenzyme complex. The lysine (K259) located between 1.2 and 2 regions of the sigma factor, was determined to be the acetylated residue of HrdB in vivo by LC-MS/MS analyses. Specifically, the label-free quantitative analysis revealed that the K259 residues of all the HrdB subunits were acetylated in the RNAP holoenzyme. Using mutations that mimic or block acetylation (K259Q and K259R), we found that K259 acetylation enhances the interaction of HrdB with the RNAP core enzyme as well as the binding activity of the RNAP holoenzyme to target promoters in vivo. Taken together, these findings provide a novel insight into an additional layer of modulation of bacterial RNAP activity.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Genes Essenciais , Holoenzimas/metabolismo , Lisina/metabolismo , Fator sigma/metabolismo , Streptomyces/metabolismo , Acetilação , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação/genética , Regiões Promotoras Genéticas , Ligação Proteica , Fator sigma/química , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
3.
J Ind Microbiol Biotechnol ; 46(8): 1205-1215, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165280

RESUMO

Genomic analysis of the clavulanic acid (CA)-high-producing Streptomyces clavuligerus strains, OL13 and OR, developed through random mutagenesis revealed a frameshift mutation in the cas1 gene-encoding clavaminate synthase 1. Overexpression of the intact cas1 in S. clavuligerus OR enhanced the CA titer by approximately 25%, producing ~ 4.95 g/L of CA, over the OR strain in the flask culture. Moreover, overexpression of the pathway-specific positive regulatory genes, ccaR and claR, in the OR strain improved CA yield by approximately 43% (~ 5.66 g/L) in the flask. However, co-expression of the intact cas1 with ccaR-claR did not further improve CA production. In the 7 L fermenter culture, maximum CA production by the OR strain expressing the wild-type cas1 and ccaR-claR reached approximately 5.52 g/L and 6.01 g/L, respectively, demonstrating that reverse engineering or simple rational metabolic engineering is an efficient method for further improvement of industrial strains.


Assuntos
Ácido Clavulânico/biossíntese , Regulação Bacteriana da Expressão Gênica , Oxigenases de Função Mista/metabolismo , Streptomyces/enzimologia , Bioengenharia , Genes Reguladores , Oxigenases de Função Mista/genética , Streptomyces/genética
4.
mBio ; 13(2): e0042522, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357210

RESUMO

The bacterial response to antibiotics eliciting resistance is one of the key challenges in global health. Despite many attempts to understand intrinsic antibiotic resistance, many of the underlying mechanisms still remain elusive. In this study, we found that iron supplementation promoted antibiotic resistance in Streptomyces coelicolor. Iron-promoted resistance occurred specifically against bactericidal antibiotics, irrespective of the primary target of antibiotics. Transcriptome profiling revealed that some genes in the central metabolism and respiration were upregulated under iron-replete conditions. Iron supported the growth of S. coelicolor even under anaerobic conditions. In the presence of potassium cyanide, which reduces aerobic respiration of cells, iron still promoted respiration and antibiotic resistance. This suggests the involvement of a KCN-insensitive type of respiration in the iron effect. This phenomenon was also observed in another actinobacterium, Mycobacterium smegmatis. Taken together, these findings provide insight into a bacterial resistance strategy that mitigates the activity of bactericidal antibiotics whose efficacy accompanies oxidative damage by switching the respiration mode. IMPORTANCE A widely investigated mode of antibiotic resistance occurs via mutations and/or by horizontal acquisition of resistance genes. In addition to this acquired resistance, most bacteria exhibit intrinsic resistance as an inducible and adaptive response to different classes of antibiotics. Increasing attention has been paid recently to intrinsic resistance mechanisms because this may provide novel therapeutic targets that help rejuvenate the efficacy of the current antibiotic regimen. In this study, we demonstrate that iron promotes the intrinsic resistance of aerobic actinomycetes Streptomyces coelicolor and Mycobacterium smegmatis against bactericidal antibiotics. A surprising role of iron to increase respiration, especially in a mode of using less oxygen, appears a fitting strategy to cope with bactericidal antibiotics known to kill bacteria through oxidative damage. This provides new insights into developing antimicrobial treatments based on the availability of iron and oxygen.


Assuntos
Actinobacteria , Streptomyces coelicolor , Actinobacteria/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Ferro/metabolismo , Oxigênio/metabolismo , Respiração , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
5.
J Microbiol ; 57(5): 388-395, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30721456

RESUMO

Streptomycetes naturally produce a variety of secondary metabolites, in the process of physiological differentiation. Streptomyces venezuelae differentiates into spores in liquid media, serving as a good model system for differentiation and a host for exogenous gene expression. Here, we report the growth and differentiation properties of S. venezuelae ATCC-15439 in liquid medium, which produces pikromycin, along with genome-wide gene expression profile. Comparison of growth properties on two media (SPA, MYM) revealed that the stationary phase cell viability rapidly decreased in SPA. Submerged spores showed partial resistance to lysozyme and heat, similar to what has been observed for better-characterized S. venezuelae ATCC10712, a chloramphenicol producer. TEM revealed that the differentiated cells in the submerged culture showed larger cell size, thinner cell wall than the aerial spores. We analyzed transcriptome profiles of cells grown in liquid MYM at various growth phases. During transition and/or stationary phases, many differentiationrelated genes were well expressed as judged by RNA level, except some genes forming hydrophobic coats in aerial mycelium. Since submerged spores showed thin cell wall and partial resistance to stresses, we examined cellular expression of MreB protein, an actin-like protein known to be required for spore wall synthesis in Streptomycetes. In contrast to aerial spores where MreB was localized in septa and spore cell wall, submerged spores showed no detectable signal. Therefore, even though the mreB transcripts are abundant in liquid medium, its protein level and/or its interaction with spore wall synthetic complex appear impaired, causing thinner- walled and less sturdy spores in liquid culture.


Assuntos
Macrolídeos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo , Parede Celular/fisiologia , Cloranfenicol/biossíntese , Perfilação da Expressão Gênica , Metabolismo Secundário/fisiologia , Streptomyces/citologia , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA