Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36772267

RESUMO

The deployment of optical network infrastructure and development of new network services are growing rapidly for beyond 5/6G networks. However, optical networks are vulnerable to several types of security threats, such as single-point failure, wormhole attacks, and Sybil attacks. Since the uptake of e-commerce and e-services has seen an unprecedented surge in recent years, especially during the COVID-19 pandemic, the security of these transactions is essential. Blockchain is one of the most promising solutions because of its decentralized and distributed ledger technology, and has been employed to protect these transactions against such attacks. However, the security of blockchain relies on the computational complexity of certain mathematical functions, and because of the evolution of quantum computers, its security may be breached in real-time in the near future. Therefore, researchers are focusing on combining quantum key distribution (QKD) with blockchain to enhance blockchain network security. This new technology is known as quantum-secured blockchain. This article describes different attacks in optical networks and provides a solution to protect networks against security attacks by employing quantum-secured blockchain in optical networks. It provides a brief overview of blockchain technology with its security loopholes, and focuses on QKD, which makes blockchain technology more robust against quantum attacks. Next, the article provides a broad view of quantum-secured blockchain technology. It presents the network architecture for the future research and development of secure and trusted optical networks using quantum-secured blockchain. The article also highlights some research challenges and opportunities.

2.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35459022

RESUMO

The timely detection of seizure activity in the case of newborns can help save lives. Clinical signs of seizures in newborns are difficult to observe, so, in this study, we propose an automated method of detecting seizures in newborns using multi-channel electroencephalogram (EEG) recording acquired from 36 newborns admitted to Royal Women's Hospital, Brisbane, Australia. A novel set of time-frequency marginal features are defined to detect seizure activity in newborns. The proposed set is based on the observation that EEG seizure signals appear either as a train of spikes or as a summation of frequency-modulated chirps with slow variation in the instantaneous frequency curve. The proposed set of features is obtained by extracting the time-frequency (TF) signature of seizure spikes and frequency-modulated chirps by exploiting the direction of ridges in the TF plane. Based on extracted TF signature of spikes, the modified time-marginal is computed whereas based on the extracted TF signature of frequency-modulated chirps, the modified frequency-marginal is computed. It is demonstrated that features extracted from the modified time-domain marginal and frequency-domain marginal in combination with TF statistical and frequency-related features lead to better accuracy than the existing TF signal classification method, i.e., the proposed method achieves an F1 score of 70.93% which is 5% greater than the existing method.


Assuntos
Eletroencefalografia , Convulsões , Algoritmos , Austrália , Eletroencefalografia/métodos , Feminino , Humanos , Recém-Nascido , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador
3.
Sensors (Basel) ; 22(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36081050

RESUMO

The millimeter-wave (mmWave) frequency is considered a viable radio wave band for fifth-generation (5G) mobile networks, owing to its ability to access a vast spectrum of resources. However, mmWave suffers from undesirable characteristics such as increased attenuation during transmission. Therefore, a well-fitted path loss model to a specific environment can help manage optimal power delivery in the receiver and optimal transmitter power in the transmitter in the mmWave band. This study investigates large-scale path loss models in a university hall environment with a real-measured path loss dataset using directional horn antennas in co-polarization (H-H) and tracking antenna systems (TAS) in line-of-sight (LOS) circumstances between the transmitter and receptor at mmWave and centimeter-level bands. Although the centimeter-level band is used in certain industrialized nations, path loss characteristics in a university hall environment have not been well-examined. Consequently, this study aims to bridge this research gap. The results of this study indicate that, in general, the large-scale floating-intercept (FI) model gives a satisfactory performance in fitting the path loss both in the center and wall side links.

4.
Entropy (Basel) ; 24(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35455115

RESUMO

Instantaneous frequency in multi-sensor recordings is an important parameter for estimation of direction of arrival estimation, source separation, and sparse reconstruction. The instantaneous frequency estimation problem becomes challenging when signal components have close or overlapping signatures and the number of sensors is less than the number of sources. In this study, we develop a computationally efficient method that exploits the direction of the IF curve in addition to the angle of arrival as additional features for the accurate tracking of IF curves. Experimental results show that the proposed scheme achieves better accuracy compared to the-state-of-art method in terms of mean square error (MSE) with a slight increase in the computational cost, i.e., the proposed method achieves MSE of -50 dB at the signal to noise ratio of 0 dB whereas the existing method achieves the MSE of -38 dB.

5.
PLoS One ; 18(3): e0282781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36976772

RESUMO

Research on path loss in indoor stairwells for 5G networks is currently insufficient. However, the study of path loss in indoor staircases is essential for managing network traffic quality under typical and emergency conditions and for localization purpose. This study investigated radio propagation on a staircase where a wall separated the stairs from free space. A horn and an omnidirectional antenna were used to determine path loss. The measured path loss evaluated the close-in-free-space reference distance, alpha-beta model, close-in-free-space reference distance with frequency weighting, and alpha-beta-gamma model. These four models exhibited good compatibility with the measured average path loss. However, comparing the path loss distributions of the projected models revealed that the alpha-beta model exhibited 1.29 dB and 6.48 dB for respectively, at 3.7 GHz and 28 GHz bands. Furthermore, the path loss standard deviations obtained in this study were smaller than those reported in previous studies.

6.
Bioengineering (Basel) ; 10(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002417

RESUMO

The application of deep learning for taxonomic categorization of DNA sequences is investigated in this study. Two deep learning architectures, namely the Stacked Convolutional Autoencoder (SCAE) with Multilabel Extreme Learning Machine (MLELM) and the Variational Convolutional Autoencoder (VCAE) with MLELM, have been proposed. These designs provide precise feature maps for individual and inter-label interactions within DNA sequences, capturing their spatial and temporal properties. The collected features are subsequently fed into MLELM networks, which yield soft classification scores and hard labels. The proposed algorithms underwent thorough training and testing on unsupervised data, whereby one or more labels were concurrently taken into account. The introduction of the clade label resulted in improved accuracy for both models compared to the class or genus labels, probably owing to the occurrence of large clusters of similar nucleotides inside a DNA strand. In all circumstances, the VCAE-MLELM model consistently outperformed the SCAE-MLELM model. The best accuracy attained by the VCAE-MLELM model when the clade and family labels were combined was 94%. However, accuracy ratings for single-label categorization using either approach were less than 65%. The approach's effectiveness is based on MLELM networks, which record connected patterns across classes for accurate label categorization. This study advances deep learning in biological taxonomy by emphasizing the significance of combining numerous labels for increased classification accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA