Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Neurosci ; 131(1): 7-14, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32075484

RESUMO

Aim: Glioma stem cells (GSCs) have been shown to contribute to tumor development and recurrence, therapeutic resistance, and cellular heterogeneity of glioblastoma multiforme (GBM). Recently, it has been reported that GSCs lose their self-renewal ability and tumorigenic potential upon differentiation. In this study, we identified Regulatory Factor X4 (RFX4) gene to regulate GSCs' survival and self-renewal activity in the GBM patients samples.Materials and methods: We utilized public datasets from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Ivy Glioblastoma Atlas Project, and The Human Protein Atlas to screen candidate genes which are associated with the development of GBM and poor patients survival. Small hairpin RNA (shRNA) lentivirus was applied to knockdown RFX4 gene in GSCs.Results: We found that RFX4 mRNA expression among the RFX family was particularly reduced during GSC differentiation. RT-qPCR analysis revealed significant downregulation of RFX4 and stem cell markers (CD15 and CD133) mRNA expressions in primary human GBM-derived GSCs cultured under serum condition. Consistently, GSCs showed significantly elevated RFX4 mRNA expression levels compared to normal astrocytes, NHA, whereas glioma cells did not. Furthermore, analysis of the TCGA data set revealed that RFX4 is highly expressed in GBM, and contributes to the lowering of patient survival. Depletion of RFX4 using shRNA lentivirus in patient GBM-derived GSCs decreased neurosphere formation and cell viability.Conclusion: These results suggest that RFX4 is a potential risk factor for maintaining the stemness of GSCs and making glioma more malignant, and thus, could be a promising target of GBM treatment.


Assuntos
Biomarcadores Tumorais/biossíntese , Neoplasias Encefálicas/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Fatores de Transcrição de Fator Regulador X/biossíntese , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Prognóstico , Fatores de Transcrição de Fator Regulador X/genética
2.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810460

RESUMO

Osteoarthritis (OA) is the most common type of arthritis and is associated with wear and tear, aging, and inflammation. Previous studies revealed that several antimicrobial peptides are up-regulated in the knee synovium of patients with OA or rheumatoid arthritis. Here, we investigated the functional effects of cathelicidin-related antimicrobial peptide (Cramp) on OA pathogenesis. We found that Cramp is highly induced by IL-1ß via the NF-κB signaling pathway in mouse primary chondrocytes. Elevated Cramp was also detected in the cartilage and synovium of mice suffering from OA cartilage destruction. The treatment of chondrocytes with Cramp stimulated the expression of catabolic factors, and the knockdown of Cramp by small interfering RNA reduced chondrocyte catabolism mediated by IL-1ß. Moreover, intra-articular injection of Cramp into mouse knee joints at a low dose accelerated traumatic OA progression. At high doses, Cramp affected meniscal ossification and tears, leading to cartilage degeneration. These findings demonstrate that Cramp is associated with OA pathophysiology.


Assuntos
Peptídeos Catiônicos Antimicrobianos/efeitos adversos , Osteoartrite do Joelho/fisiopatologia , Animais , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Cartilagem/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Injeções Intra-Articulares , Interleucina-1beta/metabolismo , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/fisiopatologia , Masculino , Menisco/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoartrite do Joelho/induzido quimicamente , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/metabolismo , Catelicidinas
3.
Mol Cell ; 47(1): 122-32, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22658415

RESUMO

Prolonged deficits in neural input activate pathological muscle remodeling, leading to atrophy. In denervated muscle, activation of the atrophy program requires HDAC4, a potent repressor of the master muscle transcription factor MEF2. However, the signaling mechanism that connects HDAC4, a protein deacetylase, to the atrophy machinery remains unknown. Here, we identify the AP1 transcription factor as a critical target of HDAC4 in neurogenic muscle atrophy. In denervated muscle, HDAC4 activates AP1-dependent transcription, whereas AP1 inactivation recapitulates HDAC4 deficiency and blunts the muscle atrophy program. We show that HDAC4 activates AP1 independently of its canonical transcriptional repressor activity. Surprisingly, HDAC4 stimulates AP1 activity by activating the MAP kinase cascade. We present evidence that HDAC4 binds and promotes the deacetylation and activation of a key MAP3 kinase, MEKK2. Our findings establish an HDAC4-MAPK-AP1 signaling axis essential for neurogenic muscle atrophy and uncover a direct crosstalk between acetylation- and phosphorylation-dependent signaling cascades.


Assuntos
Histona Desacetilases/metabolismo , MAP Quinase Quinase Quinase 2/metabolismo , Músculo Esquelético/metabolismo , Fator de Transcrição AP-1/metabolismo , Acetilação , Animais , Western Blotting , Linhagem Celular , Células HEK293 , Histona Desacetilases/genética , Humanos , MAP Quinase Quinase Quinase 2/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Denervação Muscular , Músculo Esquelético/inervação , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Fosforilação , Ligação Proteica , Interferência de RNA , Fator de Transcrição AP-1/genética
4.
J Antimicrob Chemother ; 73(8): 2054-2063, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29718248

RESUMO

Objectives: The worldwide increase in antibiotic-resistant bacteria is a growing threat to public health. Antimicrobial peptides (AMPs) are potentially effective alternatives to conventional antibiotics. We therefore tested analogues of the AMP mBjAMP1 from Branchiostoma japonicum, which we produced by adding and/or replacing amino acids to increase antimicrobial activity against Gram-negative bacteria. Methods: We compared the antimicrobial activities of mBjAMP1 analogues against Gram-negative bacteria reference strains and 52 strains of Klebsiella pneumoniae isolated from patients. Antibiofilm activity and cytotoxicity were evaluated, and the mechanisms of action were then studied. Results: Analogue peptides exhibited greater antimicrobial and antibiofilm activities than mBjAMP1. In particular, the analogue IARR-Anal10 displayed not only the greatest antimicrobial and antibiofilm activities, but also no toxicity against human red blood cells or other mammalian cells. IARR-Anal10 had little or no effect on bacterial outer membrane permeability, membrane polarization or membrane integrity. Instead, it appears IARR-Anal10 binds bacterial DNA, as evidenced in DNA gel retardation assays. Thus, IARR-Anal10 likely kills bacteria through an intracellular mechanism. We also confirmed that IARR-Anal10 suppresses the virulence of K. pneumoniae to a degree similar to tigecycline, used to treat carbapenem-resistant Enterobacteriaceae infections. Notably, IARR-Anal10 did not induce development of resistance by K. pneumoniae, though both meropenem and tigecycline did so within a short time. Conclusions: These results suggest that IARR-Anal10 is a promising agent for treating infections caused by bacteria resistant to tigecycline and meropenem.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Anfioxos/química , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Linhagem Celular , DNA Bacteriano , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana
5.
Int J Mol Sci ; 19(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29747385

RESUMO

Osteoarthritis (OA) is the most common and increasing joint disease worldwide. Current treatment for OA is limited to control of symptoms. The purpose of this study was to determine the effect of specificity protein 1 (SP1) inhibitor Mithramycin A (MitA) on chondrocyte catabolism and OA pathogenesis and to explore the underlying molecular mechanisms involving SP1 and other key factors that are critical for OA. Here, we show that MitA markedly inhibited expressions of matrix-degrading enzymes induced by pro-inflammatory cytokine interleukin-1β (IL-1β) in mouse primary chondrocytes. Intra-articular injection of MitA into mouse knee joint alleviated OA cartilage destruction induced by surgical destabilization of the medial meniscus (DMM). However, modulation of SP1 level in chondrocyte and mouse cartilage did not alter catabolic gene expression or cartilage integrity, respectively. Instead, MitA significantly impaired the expression of HIF-2α known to be critical for OA pathogenesis. Such reduction in expression of HIF-2α by MitA was caused by inhibition of NF-κB activation, at least in part. These results suggest that MitA can alleviate OA pathogenesis by suppressing NF-κB-HIF-2α pathway, thus providing insight into therapeutic strategy for OA.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Osteoartrite/tratamento farmacológico , Plicamicina/análogos & derivados , Animais , Cartilagem Articular/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/enzimologia , Condrócitos/metabolismo , Progressão da Doença , Indução Enzimática/efeitos dos fármacos , Interleucina-1beta/farmacologia , Articulações/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoartrite/enzimologia , Osteoartrite/patologia , Plicamicina/administração & dosagem , Plicamicina/farmacologia , Plicamicina/uso terapêutico , Fator de Transcrição Sp1/metabolismo
6.
Int J Mol Sci ; 19(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558431

RESUMO

Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents have side effects and depress immune responses. Thus, the research and development of novel anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of avoiding multi-drug resistance may provide a new method for anticancer treatment. This review provides useful information on the potential of marine anticancer peptides for human therapy.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Depsipeptídeos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Produtos Biológicos/uso terapêutico , Produtos Biológicos/toxicidade , Depsipeptídeos/uso terapêutico , Depsipeptídeos/toxicidade
7.
J Cell Sci ; 127(Pt 22): 4954-63, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25271058

RESUMO

Fasting and glucose shortage activate a metabolic switch that shifts more energy production to mitochondria. This metabolic adaptation ensures energy supply, but also elevates the risk of mitochondrial oxidative damage. Here, we present evidence that metabolically challenged mitochondria undergo active fusion to suppress oxidative stress. In response to glucose starvation, mitofusin 1 (MFN1) becomes associated with the protein deacetylase HDAC6. This interaction leads to MFN1 deacetylation and activation, promoting mitochondrial fusion. Deficiency in HDAC6 or MFN1 prevents mitochondrial fusion induced by glucose deprivation. Unexpectedly, failure to undergo fusion does not acutely affect mitochondrial adaptive energy production; instead, it causes excessive production of mitochondrial reactive oxygen species and oxidative damage, a defect suppressed by an acetylation-resistant MFN1 mutant. In mice subjected to fasting, skeletal muscle mitochondria undergo dramatic fusion. Remarkably, fasting-induced mitochondrial fusion is abrogated in HDAC6-knockout mice, resulting in extensive mitochondrial degeneration. These findings show that adaptive mitochondrial fusion protects metabolically challenged mitochondria.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetilação , Animais , GTP Fosfo-Hidrolases/genética , Desacetilase 6 de Histona , Histona Desacetilases/deficiência , Histona Desacetilases/metabolismo , Camundongos , Dinâmica Mitocondrial , Estresse Oxidativo
8.
EMBO Rep ; 15(11): 1175-83, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205686

RESUMO

During muscle regeneration, the transcription factor Pax7 stimulates the differentiation of satellite cells (SCs) toward the muscle lineage but restricts adipogenesis. Here, we identify HDAC4 as a regulator of Pax7-dependent muscle regeneration. In HDAC4-deficient SCs, the expression of Pax7 and its target genes is reduced. We identify HDAC4-regulated Lix1 as a Pax7 target gene required for SC proliferation. HDAC4 inactivation leads to defective SC proliferation, muscle regeneration, and aberrant lipid accumulation. Further, expression of the brown adipose master regulator Prdm16 and its inhibitory microRNA-133 are also deregulated. Thus, HDAC4 is a novel regulator of Pax7-dependent SC proliferation and potentially fate determination in regenerating muscle.


Assuntos
Histona Desacetilases/metabolismo , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/genética , Metabolismo dos Lipídeos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/genética , Proteínas/genética , Proteínas/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Am J Cancer Res ; 13(9): 4021-4038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818053

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, with an extremely poor prognosis due to resistance to standard-of-care treatments. Strong evidence suggests that the small population of glioma stem cells (GSCs) contributes to the aggressiveness of GBM. One of the mechanisms that promote GSC progression is the dysregulation of membrane transporters, which mediate the influx and efflux of substances to maintain cellular homeostasis. Here, we investigated the role of multidrug and toxin extrusion transporter gene SLC47A1 in GSCs. Results show that SLC47A1 is highly expressed in GSCs compared to non-stem cell glioma cells, and non-tumor cells. Additionally, in-silico analysis of public datasets showed that high SLC47A1 expression is linked to malignancy and a poor prognosis in glioma patients. Further, SLC47A1 expression is correlated with important biological processes and signaling pathways that support tumor growth. Meanwhile, silencing SLC47A1 by short-hairpin RNA (shRNA) influenced cell viability and self-renewal activity in GSCs. Interestingly, SLC47A1 shRNA knockdown or pharmacological inhibition potentiates the effect of temozolomide (TMZ) in GSC cells. The findings suggest that SLC47A1 could serve as a useful therapeutic target for gliomas.

10.
CNS Neurosci Ther ; 29(2): 682-690, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36514188

RESUMO

AIMS: Glioblastoma multiforme (GBM) is the most aggressive type of human brain tumor, with a poor prognosis and a median overall survival of fewer than 15 months. Glioma stem cells (GSCs) have recently been identified as a key player in tumor initiation and therapeutic resistance in GBM. ADAMTS family of metalloproteinases is known to cleave a wide range of extracellular matrix substrates and has been linked to tissue remodeling events in tumor development. Here, we investigate that ADAMTS3 regulates GSC proliferation and self-renewal activities, and tumorigenesis in orthotopic xenograft models. METHODS: ADAMTS3 mRNA expression levels in normal human astrocyte (NHA), glioma, and GSCs cell lines were compared. After knockdown of ADAMTS3, alamarBlue assay, in vitro limiting dilution, and orthotopic xenograft assays were performed. To investigate the tumor-associated roles of ADAMTS3, several statistical assays were conducted using publicly available datasets. RESULTS: ADAMTS3 level was remarkably higher in GSCs than in NHA, glioma cell lines, and their matched differentiated tumor cells. Interestingly, knockdown of ADAMTS3 disrupted GSC's proliferation, self-renewal activity, and tumor formation in vivo. Furthermore, ADAMTS3 could be used as an independent predictor of malignancy progression in GBM. CONCLUSION: We identified ADAMTS3 as a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Regulação para Baixo , Células-Tronco Neoplásicas/metabolismo , Glioma/metabolismo , Glioblastoma/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Pró-Colágeno N-Endopeptidase/genética , Pró-Colágeno N-Endopeptidase/metabolismo , Pró-Colágeno N-Endopeptidase/uso terapêutico
11.
Mol Cells ; 46(4): 245-255, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36896597

RESUMO

This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in ex vivo organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC. Furthermore, 7α,25-DHC promoted caspase dependent chondrocytes death via extrinsic and intrinsic pathways of apoptosis. Moreover, 7α,25-DHC upregulated the expression of inflammatory factors, including inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2, via the production of reactive oxygen species via increase of oxidative stress in chondrocytes. In addition, 7α,25-DHC upregulated the expression of autophagy biomarker, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3 via the modulation of p53-Akt-mTOR axis in chondrocytes. The expression of CYP7B1, caspase-3, and beclin-1 was elevated in the degenerative articular cartilage of mouse knee joint with OA. Taken together, our findings suggest that 7α,25-DHC is a pathophysiological risk factor of OA pathogenesis that is mediated a chondrocytes death via oxiapoptophagy, which is a mixed mode of apoptosis, oxidative stress, and autophagy.


Assuntos
Osteoartrite , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Condrócitos/metabolismo , Proteína Beclina-1/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Serina-Treonina Quinases TOR/metabolismo , Células Cultivadas
12.
J Cachexia Sarcopenia Muscle ; 13(6): 3091-3105, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36059045

RESUMO

BACKGROUND: Cathelicidin, an antimicrobial peptide, plays a key role in regulating bacterial killing and innate immunity; however, its role in skeletal muscle function is unknown. We investigated the potential role of cathelicidin in skeletal muscle pathology resulting from acute injury and Duchenne muscular dystrophy (DMD) in mice. METHODS: Expression changes and muscular localization of mouse cathelicidin-related antimicrobial peptide (Cramp) were examined in the skeletal muscle of normal mice treated with chemicals (cardiotoxin and BaCl2 ) or in dystrophic muscle of DMD mouse models (mdx, mdx/Utrn+/- and mdx/Utrn-/- ). Cramp penetration into myofibres and effects on muscle damage were studied by treating synthetic peptides to mouse skeletal muscles or C2C12 myotubes. Cramp knockout (KO) mice and mdx/Utrn/Cramp KO lines were used to determine whether Cramp mediates muscle degeneration. Muscle pathophysiology was assessed by histological methods, serum analysis, grip strength and lifespan. Molecular factors targeted by Cramp were identified by the pull-down assay and proteomic analysis. RESULTS: In response to acute muscle injury, Cramp was activated in muscle-infiltrating neutrophils and internalized into myofibres. Cramp treatments of mouse skeletal muscles or C2C12 myotubes resulted in muscle degeneration and myotube damage, respectively. Genetic ablation of Cramp reduced neutrophil infiltration and ameliorated muscle pathology, such as fibre size (P < 0.001; n = 6) and fibrofatty infiltration (P < 0.05). Genetic reduction of Cramp in mdx/Utrn+/- mice not only attenuated muscle damage (35%, P < 0.05; n = 9-10), myonecrosis (53%, P < 0.05), inflammation (37-65%, P < 0.01) and fibrosis (14%, P < 0.05) but also restored muscle fibre size (14%, P < 0.05) and muscle force (18%, P < 0.05). Reducing Cramp levels led to a 63% (male, P < 0.05; n = 10-14) and a 124% (female, P < 0.001; n = 20) increase in the lifespan of mdx/Utrn-/- mice. Proteomic and mechanistic studies revealed that Cramp cross-talks with Ca2+ signalling in skeletal muscle through sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase1 (SERCA1). Cramp binds and inactivates SERCA1, leading to the activation of Ca2+ -dependent calpain proteases that exacerbate DMD progression. CONCLUSIONS: These findings identify Cramp as an immune cell-derived regulator of skeletal muscle degeneration and provide a potential therapeutic target for DMD.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Masculino , Feminino , Animais , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Camundongos Endogâmicos mdx , Proteômica , Músculo Esquelético/patologia , Camundongos Knockout
13.
J Fungi (Basel) ; 8(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36135626

RESUMO

The increase and dissemination of antimicrobial resistance is a global public health issue. To address this, new antimicrobial agents have been developed. Antimicrobial peptides (AMPs) exhibit a wide range of antimicrobial activities against pathogens, including bacteria and fungi. Lycosin-II, isolated from the venom of the spider Lycosa singoriensis, has shown antibacterial activity by disrupting membranes. However, the mode of action of Lycosin-II and its antifungal activity have not been clearly described. Therefore, we confirmed that Lycosin-II showed antifungal activity against Candida albicans (C. albicans). To investigate the mode of action, membrane-related assays were performed, including an evaluation of C. albicans membrane depolarization and membrane integrity after exposure to Lycosin-II. Our results indicated that Lycosin-II damaged the C. albicans membrane. Additionally, Lycosin-II induced oxidative stress through the generation of reactive oxygen species (ROS) in C. albicans. Moreover, Lycosin-II exhibited an inhibitory effect on dual-species biofilm formation by C. albicans and Staphylococcus aureus (S. aureus), which are the most co-isolated fungi and bacteria. These results revealed that Lycosin-II can be utilized against C. albicans and dual-species strain infections.

14.
Cells ; 10(6)2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204169

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults, with a poor median survival of approximately 15 months after diagnosis. Despite several decades of intensive research on its cancer biology, treatment for GBM remains a challenge. Autophagy, a fundamental homeostatic mechanism, is responsible for degrading and recycling damaged or defective cellular components. It plays a paradoxical role in GBM by either promoting or suppressing tumor growth depending on the cellular context. A thorough understanding of autophagy's pleiotropic roles is needed to develop potential therapeutic strategies for GBM. In this paper, we discussed molecular mechanisms and biphasic functions of autophagy in gliomagenesis. We also provided a summary of treatments for GBM, emphasizing the importance of autophagy as a promising molecular target for treating GBM.


Assuntos
Autofagia/genética , Neoplasias Encefálicas , Carcinogênese , Glioblastoma , Transdução de Sinais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos
15.
Onco Targets Ther ; 14: 4867-4878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588781

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most aggressive type of human brain tumor with a poor prognosis and a low survival rate. Secreted proteins from tumors are recently considered as important modulators to promote tumorigenesis by communicating with microenvironments. Repulsive guidance molecule A (RGMA) was initially characterized as an axon guidance molecule after secretion in the brain during embryogenesis but has not been studied in GBM. In this study, we investigated secreted gene expression patterns and the correlation between RGMA expression and prognosis in GBM using in silico analysis. METHODS: RGMA mRNA levels in normal human astrocyte (NHA), human glioma cells, and GBM patient-derived glioma stem cells (GSCs) were assessed by qRT-PCR. Patient survival analysis was performed with the Kaplan-Meier curve and univariate and multivariate analyses using publicly available datasets. The predictive roles of RGMA in progressive malignancy were evaluated using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). RESULTS: RGMA mRNA expression was elevated in glioma cells and GSCs compared with NHA and correlated with unfavorable prognosis in glioma patients. Thus, RGMA could serve as an independent predictive factor for GBM. Furthermore, the increased levels of RGMA expression and its putative receptor, neogenin (NEO1), were associated with poor patient survival rates in GBM. CONCLUSION: We identified RGMA as an independent prognostic biomarker for progressive malignancy in glioblastoma and address the possibilities to develop novel therapeutic strategies against glioblastoma.

16.
Biochim Biophys Acta ; 1793(5): 781-91, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19339212

RESUMO

Cell adhesion to the extracellular matrix (ECM) can activate signaling via focal adhesion kinase (FAK) leading to dynamic regulation of cellular morphology. Mechanistic basis for the lack of effective intracellular signaling by non-attached epithelial cells is poorly understood. To examine whether signaling in suspended cells is regulated by Fer cytoplasmic tyrosine kinase, we investigated the effect of ectopic Fer expression on signaling in suspended or adherent hepatocytes. We found that ectopic Fer expression in Huh7 hepatocytes in suspension or on non-permissive poly-lysine caused significant phosphorylation of FAK Tyr577, Tyr861, or Tyr925, but not Tyr397 or Tyr576. Fer-mediated FAK phosphorylation in suspended cells was independent of c-Src activity or growth factor stimulation, but dependent of cortactin expression. Consistent with these results, complex formation between FAK, Fer, and cortactin was observed in suspended cells. The Fer-mediated effect correlated with multiple membrane protrusions, even on poly-lysine. Together, these observations suggest that Fer may allow a bypass of anchorage-dependency for intracellular signal transduction in hepatocytes.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Hepatócitos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Tirosina/metabolismo , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Células Cultivadas , Cortactina/genética , Cortactina/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/genética , Hepatócitos/citologia , Humanos , Fosforilação , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Quinases da Família src/metabolismo
17.
Antibiotics (Basel) ; 9(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233541

RESUMO

Antibiotic resistance is an important issue affecting humans and livestock. Antimicrobial peptides are promising alternatives to antibiotics. In this study, the antimicrobial peptide Css54, isolated from the venom of C. suffuses, was found to exhibit antimicrobial activity against bacteria such as Listeria monocytogenes, Streptococcus suis, Campylobacter jejuni, and Salmonella typhimurium that cause zoonotic diseases. Moreover, the cytotoxicity and hemolytic activity of Css54 was lower than that of melittin isolated from bee venom. Circular dichroism assays showed that Css54 has an α-helix structure in an environment mimicking that of bacterial cell membranes. We examined the effect of Css54 on bacterial membranes using N-phenyl-1-naphthylamine, 3,3'-dipropylthiadicarbbocyanine iodides, SYTOX green, and propidium iodide. Our findings suggest that the Css54 peptide kills bacteria by disrupting the bacterial membrane. Moreover, Css54 exhibited antibiofilm activity against L. monocytogenes. Thus, Css54 may be useful as an alternative to antibiotics in humans and animal husbandry.

18.
Cells ; 8(7)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319599

RESUMO

Osteoarthritis (OA) is a type of joint disease associated with wear and tear, inflammation, and aging. Mechanical stress along with synovial inflammation promotes the degradation of the extracellular matrix in the cartilage, leading to the breakdown of joint cartilage. The nuclear factor-kappaB (NF-κB) transcription factor has long been recognized as a disease-contributing factor and, thus, has become a therapeutic target for OA. Because NF-κB is a versatile and multi-functional transcription factor involved in various biological processes, a comprehensive understanding of the functions or regulation of NF-κB in the OA pathology will aid in the development of targeted therapeutic strategies to protect the cartilage from OA damage and reduce the risk of potential side-effects. In this review, we discuss the roles of NF-κB in OA chondrocytes and related signaling pathways, including recent findings, to better understand pathological cartilage remodeling and provide potential therapeutic targets that can interfere with NF-κB signaling for OA treatment.


Assuntos
Cartilagem/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Animais , Apoptose , Cartilagem/patologia , Epigênese Genética , Humanos , NF-kappa B/genética , Osteoartrite/genética , Osteoartrite/patologia , Transdução de Sinais
19.
Int J Biochem Cell Biol ; 40(11): 2462-71, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18567530

RESUMO

DNA methyltransferase 3B has been demonstrated to mediate gene silencing. The mechanisms how DNA methyltransferase 3B is targeted to specific regions and represses gene transcription, however, are not well understood. Here we show that by using yeast two-hybrid screening, DNA methyltransferase 3B interacts with the human polycomb protein, hPc2. This interaction was verified via co-immunoprecipitation and GST pull-down assay. Sequential deletion analysis showed that the region of DNA methyltransferase 3B responsible for interaction is mapped to the N-terminal regulatory domain. By performing a cDNA microarray analysis in HCT 116 cells, we identified that the expression of fibroblast growth factor receptor 3 is significantly increased upon the small interference RNA-mediated knockdown of hPc2, suggesting fibroblast growth factor receptor 3 as a potential target of hPc2. We further found that DNA methyltransferase 3B enhances hPc2-mediated transcriptional repression of fibroblast growth factor receptor 3, which does not require its de novo methyltransferase activity. Taken together, these results suggest that DNA methyltransferase 3B functions as a co-repressor of polycomb protein in inducing transcriptional repression independent of DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , Inativação Gênica , Humanos , Ligases , Proteínas do Grupo Polycomb , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases , DNA Metiltransferase 3B
20.
Int J Biochem Cell Biol ; 40(11): 2534-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18579430

RESUMO

A-kinase anchoring protein 12 (AKAP12) is known to function as a scaffold protein and as a putative tumor suppressor. However, little is known about the biological role of AKAP12 in hepatic cells. In this study, we performed micro-array analysis to identify the downstream pathway of AKAP12A, and found that AKAP12A overexpression up-regulates the expressions of several cholesterol-associated genes including HMG-CoA reductase and LDL receptor, which have been reported to be controlled by sterol regulatory element binding protein-2 (SREBP-2). It was found that AKAP12A activates SREBP-2 in hepatic cells, as demonstrated by the presence of its cleavage product, whereas the activation of sterol regulatory element binding protein-1 was not remarkably changed. Moreover, AKAP12A-induced SREBP-2 activation was found to depend on SREBP cleavage-activating protein (SCAP), as inhibition of SCAP by RNAi or sterols blocked SREBP-2 activation in response to AKAP12A overexpression. Interestingly, the hydrophobic amine U18666A caused dramatic movement of AKAP12A from the plasma membrane to cytosol and lysosomal membranes. Moreover, cholesterol depletion from the plasma membrane (using methyl-beta-cyclodextrin) caused a shift of AKAP12A from the plasma membrane to the cytoplasm. Cholesterol binding assay revealed that the N-terminal region of AKAP12A binds directly to cholesterol in vitro. Furthermore, AKAP12A overexpression enhanced [3H]-cholesterol efflux to extracellular acceptors, suggesting that AKAP12A may activate SREBP-2 by increasing cholesterol efflux. In conclusion, the present study suggests that AKAP12A is a novel regulator of cellular cholesterol metabolism.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colesterol/metabolismo , Hepatócitos/fisiologia , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Hepatócitos/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise em Microsséries , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA