Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Neurosci ; 43(13): 2349-2361, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36788029

RESUMO

The importance of neuronal glutamate to synaptic transmission throughout the brain illustrates the immense therapeutic potential and safety risks of targeting this system. Astrocytes also release glutamate, the clinical relevance of which is unknown as the range of brain functions reliant on signaling from these cells hasn't been fully established. Here, we investigated system xc- (Sxc), which is a glutamate release mechanism with an in vivo rodent expression pattern that is restricted to astrocytes. As most animals do not express Sxc, we first compared the expression and sequence of the obligatory Sxc subunit xCT among major classes of vertebrate species. We found xCT to be ubiquitously expressed and under significant negative selective pressure. Hence, Sxc likely confers important advantages to vertebrate brain function that may promote biological fitness. Next, we assessed brain function in male genetically modified rats (MSxc) created to eliminate Sxc activity. Unlike other glutamatergic mechanisms, eliminating Sxc activity was not lethal and didn't alter growth patterns, telemetry measures of basic health, locomotor activity, or behaviors reliant on simple learning. However, MSxc rats exhibited deficits in tasks used to assess cognitive behavioral control. In a pavlovian conditioned approach, MSxc rats approached a food-predicted cue more frequently than WT rats, even when this response was punished. In attentional set shifting, MSxc rats displayed cognitive inflexibility because of an increased frequency of perseverative errors. MSxc rats also displayed heightened cocaine-primed drug seeking. Hence, a loss of Sxc-activity appears to weaken control over nonreinforced or negative-outcome behaviors without altering basic brain function.SIGNIFICANCE STATEMENT Glutamate is essential to synaptic activity throughout the brain, which illustrates immense therapeutic potential and risk. Notably, glutamatergic mechanisms are expressed by most types of brain cells. Hence, glutamate likely encodes multiple forms of intercellular signaling. Here, we hypothesized that the selective manipulation of astrocyte to neuron signaling would alter cognition without producing widespread brain impairments. First, we eliminated activity of the astrocytic glutamate release mechanism, Sxc, in rat. This impaired cognitive flexibility and increased expression of perseverative, maladaptive behaviors. Notably, eliminating Sxc activity did not alter metrics of health or noncognitive brain function. These data add to recent evidence that the brain expresses cognition-specific molecular mechanisms that could lead to highly precise, safe medications for impaired cognition.


Assuntos
Astrócitos , Ácido Glutâmico , Ratos , Masculino , Animais , Ácido Glutâmico/metabolismo , Astrócitos/metabolismo , Transmissão Sináptica , Encéfalo/metabolismo , Neurônios/metabolismo
2.
Am J Physiol Endocrinol Metab ; 322(3): E199-E210, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001657

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) exerts pleiotropic effects on ventromedial nuclei (VMN) of the hypothalamus and its control of feeding and energy expenditure through the type I PAC1 receptor (PAC1R). However, the endogenous role of PAC1Rs in the VMN and the downstream signaling responsible for PACAP's effects on energy balance are unknown. Numerous studies have revealed that PAC1Rs are coupled to both Gαs/adenylyl cyclase/protein kinase A (Gαs/AC/PKA) and Gαq/phospholipase C/protein kinase C (Gαq/PLC/PKC), while also undergoing trafficking following stimulation. To determine the endogenous role of PAC1Rs and downstream signaling that may explain PACAP's pleiotropic effects, we used RNA interference to knockdown VMN PAC1Rs and pharmacologically inhibited PKA, PKC, and PAC1R trafficking. Knocking down PAC1Rs increased meal sizes, reduced total number of meals, and induced body weight gain. Inhibition of either PKA or PKC alone in awake male Sprague-Dawley rats, attenuated PACAP's hypophagic and anorectic effects during the dark phase. However, PKA or PKC inhibition potentiated PACAP's thermogenic effects during the light phase. Analysis of locomotor activity revealed that PKA inhibition augmented PACAP's locomotor effects, whereas PKC inhibition had no effect. Finally, PACAP administration in the VMN induces surface PAC1R trafficking into the cytosol which was blocked by endocytosis inhibitors. Subsequently, inhibition of PAC1R trafficking into the cytosol attenuated PACAP-induced hypophagia. These results revealed that endogenous PAC1Rs uniquely engage PKA, PKC, and receptor trafficking to mediate PACAP's pleiotropic effects in VMN control of feeding and metabolism.NEW & NOTEWORTHY Endogenous PAC1 receptors, integral to VMN management of feeding behavior and body weight regulation, uniquely engage PKA, PKC, and receptor trafficking to mediate the hypothalamic ventromedial nuclei control of feeding and metabolism. PACAP appears to use different signaling mechanisms to regulate feeding behavior from its effects on metabolism.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Peso Corporal , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Homeostase , Hipotálamo/metabolismo , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais
3.
Neuroendocrinology ; 110(3-4): 271-281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31167202

RESUMO

Leptin signaling pathways, stemming primarily from the hypothalamus, are necessary for maintaining normal energy homeostasis and body weight. In both rodents and humans, dysregulation of leptin signaling leads to morbid obesity and diabetes. Since leptin resistance is considered a primary factor underlying obesity, understanding the regulation of leptin signaling could lead to therapeutic tools and provide insights into the causality of obesity. While leptin actions in some hypothalamic regions such as the arcuate nuclei have been characterized, less is known about leptin activity in the hypothalamic ventromedial nuclei (VMN). Recently, pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to reduce feeding behavior and alter metabolism when administered into the VMN in a pattern similar to that of leptin. In the current study, we examined whether leptin and PACAP actions in the VMN share overlapping pathways in the regulation of energy balance. Interestingly, PACAP administration into the VMN increased STAT3 phosphorylation and SOCS3 mRNA expression, both of which are hallmarks of leptin receptor activation. In addition, BDNF mRNA expression in the VMN was increased by both leptin and PACAP administration. Moreover, antagonizing PACAP receptors fully reversed the behavioral and cellular effects of leptin injections into the VMN. Electrophysiological studies further illustrated that leptin-induced effects on VMN neurons were blocked by antagonizing PACAP receptors. We conclude that leptin dependency on PACAP signaling in the VMN suggests a potential common signaling cascade, allowing a tonically and systemically secreted neuropeptide to be more precisely regulated by central neuropeptides.


Assuntos
Comportamento Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Leptina/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais/fisiologia , Núcleo Hipotalâmico Ventromedial/patologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo
4.
Int J Obes (Lond) ; 43(4): 928-932, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30082747

RESUMO

Obesity develops, in part, due to frequent overconsumption. Therefore, it is important to identify the regulatory mechanisms that promote eating beyond satiety. Previously, we have demonstrated that an acute microinjection of the neuropeptide PACAP into the nucleus accumbens (NAcc) attenuates palatable food consumption in satiated rats. To better understand the mechanism by which intra-NAcc PACAP selectively blocks palatable food intake, the current work employed a rodent taste reactivity paradigm to assess the impact of PACAP on the hedonic processing of a 1% sucrose solution. Our results revealed that bilateral intra-NAcc PACAP infusions significantly reduced appetitive orofacial responses to sucrose. Interestingly, the effect of PACAP on the expression of aversive responses to sucrose was dependent on the rostral-caudal placement of the microinjection. In a separate group of rats, PACAP was microinjected into the hypothalamus (a region of the brain in which PACAP does not attenuate palatable feeding). Here we found that PACAP had no effect on the hedonic perception of the sucrose solution. Taken together, this dataset indicates that PACAP acts in specific subregions of the NAcc to attenuate palatability-induced feeding by reducing the perceived hedonic value of palatable food.


Assuntos
Comportamento Alimentar/fisiologia , Núcleo Accumbens/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Sacarose/farmacologia , Paladar/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Recompensa
5.
J Neurochem ; 137(3): 384-93, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26851652

RESUMO

Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos , Animais , Cistina/metabolismo , Feminino , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Gravidez , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/biossíntese , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Transmissão Sináptica/fisiologia , Regulação para Cima/genética
6.
Synapse ; 68(12): 604-612, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25066643

RESUMO

In the central nervous system, cystine import in exchange for glutamate through system xc- is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc- activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine-glutamate exchange via system xc-. In this study, 24-h treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc- function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc- inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc- activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine-glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc-. Furthermore, the potentiation of system xc- activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc- activity. Synapse 68:604-612, 2014. © 2014 Wiley Periodicals, Inc.

7.
Am J Physiol Endocrinol Metab ; 305(12): E1452-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24148346

RESUMO

Numerous studies have demonstrated that both the hypothalamic paraventricular nuclei (PVN) and ventromedial nuclei (VMN) regulate energy homeostasis through behavioral and metabolic mechanisms. Receptors for pituitary adenylate cyclase-activating polypeptide (PACAP) are abundantly expressed in these nuclei, suggesting PACAP may be critical for the regulation of feeding behavior and body weight. To characterize the unique behavioral and physiological responses attributed to select hypothalamic cell groups, PACAP was site-specifically injected into the PVN or VMN. Overall food intake was significantly reduced by PACAP at both sites; however, meal pattern analysis revealed that only injections into the PVN produced significant reductions in meal size, duration, and total time spent eating. PACAP-mediated hypophagia in both the PVN and VMN was abolished by PAC1R antagonism, whereas pretreatment with a VPACR antagonist had no effect. PACAP injections into the VMN produced unique changes in metabolic parameters, including significant increases in core body temperature and spontaneous locomotor activity that was PAC1R dependent whereas, PVN injections of PACAP had no effect. Finally, PACAP-containing afferents were identified using the neuronal tracer cholera toxin subunit B (CTB) injected unilaterally into the PVN or VMN. CTB signal from PVN injections was colocalized with PACAP mRNA in the medial anterior bed nucleus of the stria terminalis, VMN, and lateral parabrachial nucleus (LPB), whereas CTB signal from VMN injections was highly colocalized with PACAP mRNA in the medial amygdala and LPB. These brain regions are known to influence energy homeostasis perhaps, in part, through PACAP projections to the PVN and VMN.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Animais , Avaliação Pré-Clínica de Medicamentos , Comportamento Alimentar/fisiologia , Homeostase/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Atividade Motora/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Termogênese/efeitos dos fármacos
8.
Amino Acids ; 45(5): 1133-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23904096

RESUMO

Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Encéfalo/metabolismo , Catecolaminas/metabolismo , Exercício Físico/fisiologia , Serotonina/metabolismo , Animais , Suplementos Nutricionais/análise , Humanos , Ratos , Ratos Sprague-Dawley
9.
Endocrinology ; 164(5)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917637

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) and its cognate receptor PAC1R play key roles in energy balance. Central neuropeptide systems like PACAP are critical to the neuroendocrine system that regulates energy homeostasis in regions of the hypothalamus. A thorough investigation into central PACAP's influence on energy balance presents an opportunity to reveal putative causes of energy imbalance that could lead to obesity. In this review, we provide a brief overview of preclinical studies that have examined hypothalamic PACAP's influence on feeding behavior and metabolic regulation. Notably, due to the complexity and pleiotropic nature of the PACAP system, we highlight the need for a nuanced examination of PACAP signaling that utilizes a complex intersection of signaling circuitry in energy regulation that could ultimately offer insights to future therapeutic targets relevant for treating obesity.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hipotálamo/metabolismo , Peso Corporal , Obesidade
10.
Front Integr Neurosci ; 16: 1010181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467333

RESUMO

Background: As rates of obesity and diabetes have increased dramatically over the past few decades, the use of anti-obesity drugs has now become a routine therapeutic measure. However, the pharmacological effects of chronic use of these drugs in humans frequently lead to reduced efficacy in reducing appetite and body weight through as-yet-unidentified mechanisms. An example of this can be found in animal studies where the appetite suppressant DL-fenfluramine (FEN) is chronically administered and its tolerance develops in animals and humans. The appetite effects of FEN are typically measured in several animal studies by the feeding changes in a balanced standard diet. To determine whether FEN differentially altered appetite suppression in animals with long-term expression with different macronutrient diet compositions, its anorexic effects were measured specifically in male rats that had previously been chronically maintained on normal chow (NC) or a high-fat and high-carbohydrate western diet (WD). Methods: Three experiments were conducted by feeding the animals either NC or WD for 1 month to habituate them with their diet. Animals maintained on either NC or WD were subsequently offered both diet options ad libitum for a 2- or 7-day adaptation period while receiving daily systemic FEN treatment. Results: The results suggested that long-term habituated food affected the food preference of animals and their appetite even after chronic systemic FEN administration. Therefore, the effectiveness and success or failure of repeated use of chronic anti-obesity drugs may depend on habituated food type. Conclusion: The appetite suppressant effect was found to be determined by the palatability of a specific macronutrient and the habituated food rather than by a change in the concentration of the administered FEN. This results in a critical analysis of the rationale for taking medication considering the patient's past dietary habits to achieve successful weight loss.

11.
Am J Physiol Regul Integr Comp Physiol ; 301(6): R1625-34, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957159

RESUMO

Numerous studies have demonstrated that the hypothalamic ventromedial nuclei (VMN) regulate energy homeostasis by integrating and utilizing behavioral and metabolic mechanisms. The VMN heavily express pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptors (PAC1R). Despite the receptor distribution, most PACAP experiments investigating affects on feeding have focused on intracerebroventricular administration or global knockout mice. To identify the specific contribution of PACAP signaling in the VMN, we injected PACAP directly into the VMN and measured feeding behavior and indices of energy expenditure. Following an acute injection of PACAP, nocturnal food intake was significantly reduced for 6 h after injections without evidence of malaise. In addition, PACAP-induced suppression of feeding also occurred following an overnight fast and could be blocked by a specific PAC1R antagonist. Metabolically, VMN-specific injections of PACAP significantly increased both core body temperature and spontaneous locomotor activity with a concurrent increase in brown adipose uncoupling protein 1 mRNA expression. To determine which signaling pathways were responsive to PACAP administration into the VMN, we measured mRNA expression of well-characterized hypothalamic neuropeptide regulators of feeding. One hour after PACAP administration, expression of pro-opiomelanocortin mRNA was significantly increased in the arcuate nuclei (ARC), with no changes in neuropeptide Y and agouti-related polypeptide mRNA levels. This suggests that PAC1R expressing VMN neurons projecting to pro-opiomelanocortin neurons contribute to hypophagia by involving melanocortin signaling. While the VMN also abundantly express PACAP protein, the present study demonstrates that PACAP input to the VMN can influence the control of energy homeostasis.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Termogênese/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
12.
Neurochem Res ; 36(3): 559-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21207140

RESUMO

Serotonin (5HT) synthesis in brain is influenced by precursor (tryptophan (TRP)) concentrations, which are modified by food ingestion. Hence, in rats, a carbohydrate meal raises brain TRP and 5HT; a protein-containing meal does not, but little attention has focused on differences among dietary proteins. Recently, single meals containing different proteins have been shown to produce marked changes in TRP and 5HT. The present studies evaluate if such differences persist when rats ingest such diets chronically. Male rats were studied that ingested diets for 9 days containing zein, wheat gluten, soy protein, casein, or α-lactalbumin (17% dry weight). Brain TRP varied up to eightfold, and 5HT synthesis fivefold among the different protein groups. TYR and LEU concentrations, and catecholamine synthesis rate in brain varied much less. The effects of dietary protein on brain TRP and 5HT previously noted after single meals thus continue undiminished when such diets are consumed chronically.


Assuntos
Encéfalo/metabolismo , Dieta , Proteínas Alimentares/metabolismo , Serotonina/biossíntese , Triptofano/metabolismo , Animais , Peso Corporal , Leucina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
13.
Nutr Neurosci ; 14(6): 260-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22053757

RESUMO

OBJECTIVES: Previous studies have shown that brain tyrosine (TYR) levels and catecholamine synthesis rate increase in rats as chronic dietary protein content increases from 2 to 10% (% weight). A single protein, casein, was examined. The present study explores how TYR levels and catecholamine synthesis (and tryptophan (TRP) levels and serotonin synthesis) change when different proteins are ingested chronically over the same range of dietary protein contents. METHODS: Male rats ingested for 8 days diets contain 2 or 10% protein (zein, gluten, casein, soy protein, or alpha-lactalbumin). On the last day, they were killed 2.5 hours into the dark period, 30 minutes after receiving an injection of m-hydroxybenzylhydrazine, an inhibitor of aromatic l-amino acid decarboxylase. Brain samples were analyzed for amino acids, including 5-hydroxytryptophan (index of serotonin synthesis rate) and dihydroxyphenylalanine (index of catecholamine synthesis rate), by HPLC-electrochemical detection. RESULTS: TYR levels and catecholamine synthesis rate in brain were unaffected by the particular protein ingested. However, TRP levels and serotonin synthesis rate varied markedly, depending on the protein ingested, with effects being most prominent in the 10% protein groups. The effect of dietary protein on brain TRP correlated very highly with its effect on serotonin synthesis. DISCUSSION: The results indicate that the protein ingested can chronically modify TRP levels and serotonin synthesis in brain, but not TYR levels or catecholamine synthesis, with effects most distinct at an adequate level of protein intake (10%).


Assuntos
Encéfalo/metabolismo , Catecolaminas/metabolismo , Proteínas Alimentares/administração & dosagem , Serotonina/metabolismo , Triptofano/metabolismo , Tirosina/metabolismo , 5-Hidroxitriptofano/metabolismo , Animais , Inibidores das Descarboxilases de Aminoácidos Aromáticos , Encéfalo/efeitos dos fármacos , Caseínas/administração & dosagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Dieta com Restrição de Proteínas/efeitos adversos , Di-Hidroxifenilalanina/metabolismo , Inibidores Enzimáticos/farmacologia , Hidrazinas/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Deficiência de Proteína/sangue , Deficiência de Proteína/metabolismo , Ratos , Ratos Sprague-Dawley , Triptofano/sangue , Tirosina/sangue
14.
Pharmacol Ther ; 117(1): 105-22, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17950459

RESUMO

Appetite suppressants have been available as weight-reducing aids for over 50 years. The first discovered was amphetamine, which was potent, but possessed undesirable side effects (it is a stimulant and elevates blood pressure). Subsequently, a variety of appetite drugs was developed, all structurally related to amphetamine, but mostly lacking unwanted side effects. Until recently, fenfluramine (FEN) was the most widely used; presently, sibutramine is the most commonly used appetite suppressant. While these appetite suppressants are effective at reducing hunger and food intake when given as a single dose or for short periods of time, their effectiveness diminishes when administered chronically. The biological mechanisms underlying this tolerance have not been carefully studied, but many possibilities have been identified, including the down-regulation in brain of neurotransmitter receptors that might mediate the action of these drugs and adaptive responses of the appetite control circuitry in brain. To date, however, few studies have examined these possibilities in any detail. This article focuses on the question of why appetite suppressants lose efficacy, when given chronically, because this issue is important to the development of the next generation of appetite suppressants. Chronic efficacy should be an issue studied relatively early in the drug development process. This issue is of particular relevance, since obesity treatment is now recognized as a long-term, not a short-term, process. If appetite suppressants are to become a more important tool in obesity treatment, agents that do not lose efficacy when administered for extended periods of time must be identified.


Assuntos
Depressores do Apetite/farmacologia , Tolerância a Medicamentos , Redução de Peso/efeitos dos fármacos , Animais , Depressores do Apetite/administração & dosagem , Peso Corporal/efeitos dos fármacos , Ciclobutanos/administração & dosagem , Ciclobutanos/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Fenfluramina/administração & dosagem , Fenfluramina/farmacologia , Humanos , Leptina/administração & dosagem , Leptina/farmacologia , Obesidade/tratamento farmacológico , Ratos , Fatores de Tempo
15.
Life Sci ; 81(12): 1024-30, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17822717

RESUMO

Many antipsychotics cause weight gain in humans, but usually not in rats, when injected once or twice daily. Since blood antipsychotic half-lives are short in rats, compared to humans, chronic administration by constant infusion may be necessary to see consistent weight gain in rats. Male and female rats were implanted with mini-pumps for constant infusion of olanzapine (5 mg/kg/day), clozapine (10 mg/kg/day) or vehicle for 11 days. Food intake and body weight were measured; blood drug levels were measured by HPLC. Olanzapine increased food intake and body weight in female, but not male rats. Serum olanzapine concentrations were 30-35 ng/ml. Clozapine had no effect on food intake or body weight in female or male rats. Serum clozapine concentrations were about 75 ng/ml. Single-dose pharmacokinetic analysis revealed a serum terminal half-life of 1.2-1.5 h for each drug, with no sex differences. Despite the fact that olanzapine and clozapine promote weight gain in humans, these drugs appear to have minimal effects on body weight and food intake in rats, except for a modest effect of olanzapine in female rats, even though therapeutic levels of olanzapine are achieved in serum during chronic infusion. Hence, the rapid clearance of drug following single administration in previous studies cannot explain the weak or absent effects of antipsychotics on weight gain in this species. The rat thus appears to be an inadequate model of weight gain produced by some antipsychotics in humans.


Assuntos
Antipsicóticos/farmacologia , Benzodiazepinas/farmacologia , Clozapina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Animais , Benzodiazepinas/farmacocinética , Clozapina/farmacocinética , Feminino , Masculino , Olanzapina , Ratos , Ratos Sprague-Dawley
16.
Brain Res ; 1087(1): 83-6, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16626640

RESUMO

Appetite suppressants lose efficacy when given chronically; the mechanisms are unknown. We gave male rats once-daily dl-fenfluramine (dl-FEN, 5 mg/kg, i.p.) injections for 15 days and measured mRNA expression of corticotropin releasing factor (CRF), neuropeptide Y (NPY) and proopiomelanocortin (POMC) in hypothalamic neurons on days 1, 2 and 15. dl-FEN decreased food intake on days 1-2 but not on day 15. The drug increased CRF mRNA and decreased NPY mRNA on days 1-2; on day 15, NPY mRNA was normal, but CRF mRNA remained elevated. No changes occurred in POMC mRNA. Thus, only the NPY mRNA response to dl-FEN correlated with changes in food intake over time in a manner consistent with the known effects of NPY on food intake.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Fenfluramina/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Neuropeptídeos/metabolismo , Pró-Opiomelanocortina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Animais , Comportamento Animal , Peso Corporal/efeitos dos fármacos , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Hibridização In Situ/métodos , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeos/genética , Pró-Opiomelanocortina/genética , Ratos , Fatores de Tempo
17.
Front Neurosci ; 10: 383, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597817

RESUMO

While pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the hypothalamic ventromedial nuclei (VMN) has been shown to regulate feeding, a challenge in unmasking a role for this peptide in obesity is that excess feeding can involve numerous mechanisms including homeostatic (hunger) and hedonic-related (palatability) drives. In these studies, we first isolated distinct feeding drives by developing a novel model of binge behavior in which homeostatic-driven feeding was temporally separated from feeding driven by food palatability. We found that stimulation of the VMN, achieved by local microinjections of AMPA, decreased standard chow consumption in food-restricted rats (e.g., homeostatic feeding); surprisingly, this manipulation failed to alter palatable food consumption in satiated rats (e.g., hedonic feeding). In contrast, inhibition of the nucleus accumbens (NAc), through local microinjections of GABA receptor agonists baclofen and muscimol, decreased hedonic feeding without altering homeostatic feeding. PACAP microinjections produced the site-specific changes in synaptic transmission needed to decrease feeding via VMN or NAc circuitry. PACAP into the NAc mimicked the actions of GABA agonists by reducing hedonic feeding without altering homeostatic feeding. In contrast, PACAP into the VMN mimicked the actions of AMPA by decreasing homeostatic feeding without affecting hedonic feeding. Slice electrophysiology recordings verified PACAP excitation of VMN neurons and inhibition of NAc neurons. These data suggest that the VMN and NAc regulate distinct circuits giving rise to unique feeding drives, but that both can be regulated by the neuropeptide PACAP to potentially curb excessive eating stemming from either drive.

18.
Brain Res ; 1007(1-2): 19-28, 2004 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-15064132

RESUMO

Although the selective toxicity of 5,7-dihydroxytryptamine (5,7-DHT) is thought to depend on the drug's transport into serotonin (5HT) neurons via the 5HT transporter, few studies have critically examined this postulation. We therefore evaluated if 5,7-DHT-induced reductions in 5HT concentrations and synthesis rate in rat brain are blocked by pretreatment with 5HT-selective reuptake inhibitors. Rats pretreated with desipramine (DMI) (to prevent norepinephrine depletion) received intracerebroventricular injections of 5,7-DHT (5, 50, 100, 200 microg/rat) 30 min after fluoxetine (20 mg/kg ip). Forty-eight hours later, they received m-hydroxybenzylhydrazine 30 min before sacrifice. The concentrations of 5HT and 5-hydroxytryptophan (5HTP, an index of 5HT synthesis) were measured in hypothalamus, cortex and brainstem. Each 5,7-DHT dose produced significant reductions in 5HT and 5HTP concentrations in all regions examined (5 microg reduced 5HT but not 5HTP), effects that were not blocked by fluoxetine. Two other 5HT reuptake blockers (chlorimipramine, alaproclate) also failed to block the 5HT and 5HTP depleting actions of 5,7-DHT. Desipramine blocked 5,7-DHT-induced norepinephrine (NE) depletion. Pretreatment with the 5HT receptor antagonist metergoline, or the 5HT(1A) agonist 8-hydroxy-(di-n-propylamino)tetralin (to slow 5HT neuronal firing rate) also failed to antagonize the 5HT depleting action of 5,7-DHT. Together, the data strongly suggest that the mechanism by which 5,7-DHT depletes the brain of serotonin does not involve 5HT-transporter-mediated concentration of neurotoxin in 5HT neurons, may not involve 5HT receptor interaction, and does not depend on the firing rate of the 5HT neuron.


Assuntos
5,7-Di-Hidroxitriptamina/farmacologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/análogos & derivados , Química Encefálica , Encéfalo/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotoninérgicos/farmacologia , Serotonina/deficiência , 5,7-Di-Hidroxitriptamina/administração & dosagem , 5-Hidroxitriptofano/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Inibidores da Captação Adrenérgica/farmacologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Desipramina/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Interações Medicamentosas , Eletroquímica/métodos , Injeções Intraventriculares/métodos , Masculino , Metergolina/farmacologia , Ratos , Ratos Sprague-Dawley , Serotoninérgicos/administração & dosagem , Antagonistas da Serotonina/farmacologia
19.
Brain Res ; 928(1-2): 30-9, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11844469

RESUMO

The mechanisms by which fenfluramine suppresses food intake and body weight have been linked to its ability to enhance transmission across serotonin synapses in brain. This drug initially lowers body weight and suppresses food intake, yet after repeated administration food intake soon returns to normal and body weight no longer decreases. Fenfluramine also causes rapid and prolonged reductions in brain serotonin concentrations, which might account for its loss of appetite suppression. This possibility has been evaluated in rats by assessing if intermittent, chronic fenfluramine administration could suppress food intake during each treatment period, and if so, whether such an effect occurs in the presence of reduced brain serotonin levels. Rats were injected once daily with 10 mg/kg D,L-fenfluramine for 5 days, and then received no injections for the next 5 days. Control rats received only vehicle injections. This 10-day sequence was repeated five more times. During each period of fenfluramine administration, daily food intake dropped markedly the first 1-2 days of treatment, but returned to pretreatment values by day 5. Daily food intake was normal or slightly above normal during non-injection periods. Body weight dropped modestly during each period of fenfluramine administration, and rose during each subsequent period when injections had ceased. Serotonin concentrations and synthesis rates in several brain regions were markedly reduced at early, middle, and late periods of the experiment. Despite the long-term reduction in brain serotonin pools produced by fenfluramine, the drug continues to reduce food intake and body weight. Several possible interpretations of these findings are considered, based on the multiple mechanisms through which this drug has been proposed to modify synaptic serotonin transmission.


Assuntos
Encéfalo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Fenfluramina/farmacologia , Neurônios/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/deficiência , 5-Hidroxitriptofano/metabolismo , Animais , Apetite/efeitos dos fármacos , Apetite/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Encéfalo/metabolismo , Regulação para Baixo/fisiologia , Esquema de Medicação , Resistência a Medicamentos/fisiologia , Ingestão de Alimentos/fisiologia , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/biossíntese
20.
Brain Res Brain Res Protoc ; 13(2): 115-25, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15171994

RESUMO

RNA interference (RNAi) has become a popular tool to silence gene expression in a variety of in vitro and in vivo systems. However, it has met with limited success in inhibiting gene expression in adult mammals. Here we demonstrate that long double-stranded RNA (dsRNA) can be used to create a "site-specific", transient knockdown of genes in a fashion that is phenotypically akin to genetically manipulated organisms. Corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) that regulate a variety of physiological processes including the hypothalamic-pituitary-adrenal axis (HPA axis), energy and water homeostasis were used as model systems. Stereotaxic injections of dsRNA against CRF and AVP in the PVN specifically abolished the expression of these genes in the PVN leaving expression in other loci intact. Control dsRNA did not affect CRF or AVP expression in any brain region, suggesting that dsRNA did not shut down global protein synthesis. ANOVA showed significant main effects of silencing of CRF on dampening of the stress-activated release of adrenocorticotrophin hormone (ACTH) (F(2,7)=4.87; p<0.047). Silencing of AVP resulted in increased water consumption, increased urine output and decreased urine osmolality as compared to control dsRNA-treated rats. Furthermore, dsRNA had no obvious deleterious effects on body weight or food consumption, variables considered essential in ruling out adverse physiologic effects in animal models. Thus, using long dsRNA, we were able to ascertain site-specific roles of CRF and AVP in adult rats without any developmental compensation and in a wild-type background.


Assuntos
Inativação Gênica/fisiologia , Hipotálamo/metabolismo , Biologia Molecular/métodos , Neuropeptídeos/genética , Interferência de RNA/fisiologia , RNA de Cadeia Dupla/genética , Hormônio Adrenocorticotrópico/metabolismo , Animais , Arginina Vasopressina/antagonistas & inibidores , Arginina Vasopressina/genética , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Hormônio Liberador da Corticotropina/genética , Regulação para Baixo/genética , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/genética , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/efeitos dos fármacos , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA de Cadeia Dupla/farmacologia , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico/genética , Estresse Fisiológico/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA