RESUMO
The mutations in the genes encoding the subunits of complex I of the mitochondrial electron transport chain are the most common cause of Leber's hereditary optic neuropathy (LHON), a maternal hereditary disease characterized by retinal ganglion cell (RGC) degeneration. The characteristics of incomplete penetrance indicate that nuclear genetic and environmental factors also determine phenotypic expression of LHON. Therefore, further understanding of the role of mutant mitochondrial nicotinamide adenine dinucleotide dehydrogenase subunit proteins and nuclear genetic factors/environmental effects in the etiology of LHON is needed. In this study, we generated human-induced pluripotent stem cells (hiPSCs) from healthy control, unaffected LHON mutation carrier, and affected LHON patient. hiPSC-derived RGCs were used to study the differences between affected and unaffected carriers of mitochondrial DNA point mutation m.11778G > A in the MT-ND4 gene. We found that both mutated cell lines were characterized by increase in reactive oxygen species production, however, only affected cell line had increased levels of apoptotic cells. We found a significant increase in retrograde mitochondria and a decrease in stationary mitochondria in the affected RGC axons. In addition, the messenger RNA and protein levels of KIF5A in the LHON-affected RGCs were significantly reduced. Antioxidant N-acetyl-L-cysteine could restore the expression of KIF5A and the normal pattern of mitochondrial movement in the affected RGCs. To conclude, we found essential differences in the mutually dependent processes of oxidative stress, mitochondrial transport and apoptosis between two LHON-specific mutation carrier RGC cell lines, asymptomatic carrier and disease-affected, and identified KIF5A as a central modulator of these differences.
Assuntos
Cinesinas/genética , Mitocôndrias/genética , NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber/genética , Estresse Oxidativo/genética , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia , Mutação Puntual/genética , Espécies Reativas de Oxigênio/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologiaRESUMO
Programmed death-ligand 1 (PD-L1), an immune checkpoint ligand, is recognized as a potential target for cancer immunotherapy as well as for the induction of transplantation tolerance. However, how the crosstalk between stem cell programming and cytokine signaling regulates PD-L1 expression during stem cell differentiation and cancer cell plasticity remains unclear. Herein, we reported that PD-L1 expression was regulated by SOX2 during embryonic stem cell (ESC) differentiation and lung cancer cell plasticity. PD-L1 was induced during ESC differentiation to fibroblasts and was downregulated during SOX2-mediated reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs). Furthermore, SOX2 activation affected cancer cell plasticity and inhibited PD-L1 expression in lung cancer cells. We discovered that the H3K27ac signal at the PD-L1 locus was enhanced during ESC differentiation to fibroblasts as well as during cancer plasticity of SOX2-positive lung cancer cells to SOX2-negative counterparts. Romidepsin, an epigenetic modifier, induced PD-L1 expression in lung cancer cells, whereas TGF-ß stimulation downregulated SOX2 but upregulated PD-L1 expression in lung cancer cells. Furthermore, in addition to PD-L1, the expressions of EGFR and its ligand HBEGF were downregulated by activation of endogenous SOX2 expression during lung cancer cell plasticity and iPSC reprogramming, and the activation of EGFR signaling by HBEGF upregulated PD-L1 expression in lung cancer cells. Together, our results reveal the crosstalk between SOX2 programming and cytokine stimulation influences PD-L1 expression, and these findings may provide insights into PD-L1-mediated therapeutics.
Assuntos
Antígeno B7-H1 , Epigênese Genética , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Diferenciação Celular/genética , Plasticidade Celular/genética , Citocinas/metabolismo , Receptores ErbB/metabolismo , Humanos , Ligantes , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Células-Tronco/citologiaRESUMO
Inherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.
Assuntos
Nanopartículas , Doenças Retinianas , Humanos , Sistemas CRISPR-Cas/genética , Estudos Prospectivos , Doenças Retinianas/genética , Doenças Retinianas/terapia , Retina , Terapia GenéticaRESUMO
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) is an efficient and precise gene-editing technology that offers a versatile solution for establishing treatments directed at genetic diseases. Currently, CRISPR/Cas9 delivery into cells relies primarily on viral vectors, which suffer from limitations in packaging capacity and safety concerns. These issues with a nonviral delivery strategy are addressed, where Cas9â¢sgRNA ribonucleoprotein (RNP) complexes can be encapsulated into supramolecular nanoparticles (SMNP) to form RNPâSMNPs, which can then be delivered into targeted cells via supramolecular nanosubstrate-mediated delivery. Utilizing the U87 glioblastoma cell line as a model system, a variety of parameters for cellular-uptake of the RNP-laden nanoparticles are examined. Dose- and time-dependent CRISPR/Cas9-mediated gene disruption is further examined in a green fluorescent protein (GFP)-expressing U87 cell line (GFP-U87). The utility of an optimized SMNP formulation in co-delivering Cas9 protein and two sgRNAs that target deletion of exons 45-55 (708 kb) of the dystrophin gene is demonstrated. Mutations in this region lead to Duchenne muscular dystrophy, a severe genetic muscle wasting disease. Efficient delivery of these gene deletion cargoes is observed in a human cardiomyocyte cell line (AC16), induced pluripotent stem cells, and mesenchymal stem cells.
Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteína 9 Associada à CRISPR , Edição de Genes , Vetores Genéticos , HumanosRESUMO
BACKGROUND: Liver functional reserve is a major prognostic determinant in patients with hepatocellular carcinoma (HCC). The albumin-bilirubin (ALBI) score is an objective method to assess the severity of cirrhosis in this setting. However, calculation of the ALBI score is complex and difficult to access in clinical practice. Recently, the EZ (easy)-ALBI score was proposed as an alternative biomarker of liver injury. We aimed to evaluate the prognostic role of the EZ-ALBI score in HCC from early to advanced stages. METHODS: A total of 3794 newly diagnosed HCC patients were prospectively enrolled and retrospectively analyzed. Independent prognostic predictors were determined by using the multivariate Cox proportional hazards model. RESULTS: The EZ-ALBI score showed good correlation with the ALBI score (correlation coefficient, 0.965; p < 0.001). The correlation of the EZ-ALBI score was highly preserved in different Child-Turcotte-Pugh (CTP) classifications, treatment methods, and Barcelona Clinic Liver Cancer (BCLC) stages (correlation coefficients, 0.90-0.97). In the Cox multivariate analysis, age >65 years, male sex, serum α-fetoprotein >20 ng/ml, large or multiple tumors, total tumor volume >100 cm3 , vascular invasion or distant metastasis, ascites, poor performance status, EZ-ALBI grade 2 and 3, and noncurative treatments were independently associated with increased mortality (all p < 0.05). Moreover, EZ-ALBI grade can stratify long-term survival in patients with different CTP class, treatment strategy, and BCLC stage. CONCLUSIONS: The EZ-ALBI score is an easy and feasible method to evaluate liver functional reserve. As a new prognostic biomarker in HCC, the predictive power of the EZ-ALBI grade is independent across different cancer stages and treatments.
RESUMO
Pluripotency and cell fates can be modulated through the regulation of super-enhancers; however, the underlying mechanisms are unclear. Here, we showed a novel mechanism in which Ash2l directly binds to super-enhancers of several stemness genes to regulate pluripotency and self-renewal in pluripotent stem cells. Ash2l recruits Oct4/Sox2/Nanog (OSN) to form Ash2l/OSN complex at the super-enhancers of Jarid2, Nanog, Sox2 and Oct4, and further drives enhancer activation, upregulation of stemness genes, and maintains the pluripotent circuitry. Ash2l knockdown abrogates the OSN recruitment to all super-enhancers and further hinders the enhancer activation. In addition, CRISPRi/dCas9-mediated blocking of Ash2l-binding motifs at these super-enhancers also prevents OSN recruitment and enhancer activation, validating that Ash2l directly binds to super-enhancers and initiates the pluripotency network. Transfection of Ash2l with W118A mutation to disrupt Ash2l-Oct4 interaction fails to rescue Ash2l-driven enhancer activation and pluripotent gene upregulation in Ash2l-depleted pluripotent stem cells. Together, our data demonstrated Ash2l formed an enhancer-bound Ash2l/OSN complex that can drive enhancer activation, govern pluripotency network and stemness circuitry.
Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fatores de Transcrição/genética , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Autorrenovação Celular/genética , Reprogramação Celular/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Mutação/genética , Proteína Homeobox Nanog/genética , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/genética , TransfecçãoRESUMO
The late-onset type of Fabry disease (FD) with GLA IVS4 + 919G > A mutation has been shown to lead to cardiovascular dysfunctions. In order to eliminate variations in other aspects of the genetic background, we established the isogenic control of induced pluripotent stem cells (iPSCs) for the identification of the pathogenetic factors for FD phenotypes through CRISPR/Cas9 genomic editing. We adopted droplet digital PCR (ddPCR) to efficiently capture mutational events, thus enabling isolation of the corrected FD from FD-iPSCs. Both of these exhibited the characteristics of pluripotency and phenotypic plasticity, and they can be differentiated into endothelial cells (ECs). We demonstrated the phenotypic abnormalities in FD iPSC-derived ECs (FD-ECs), including intracellular Gb3 accumulation, autophagic flux impairment, and reactive oxygen species (ROS) production, and these abnormalities were rescued in isogenic control iPSC-derived ECs (corrected FD-ECs). Microarray profiling revealed that corrected FD-derived endothelial cells reversed the enrichment of genes in the pro-inflammatory pathway and validated the downregulation of NF-κB and the MAPK signaling pathway. Our findings highlighted the critical role of ECs in FD-associated vascular dysfunctions by establishing a reliable isogenic control and providing information on potential cellular targets to reduce the morbidity and mortality of FD patients with vascular complications.
Assuntos
Células Endoteliais , Doença de Fabry/terapia , Edição de Genes , Células-Tronco Pluripotentes Induzidas , Mutação , alfa-Galactosidase/genética , Proteína 9 Associada à CRISPR , Doença de Fabry/enzimologia , Doença de Fabry/genética , Doença de Fabry/patologia , Humanos , Inflamação , FenótipoRESUMO
Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.
Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Retina/citologia , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/citologia , Organoides/metabolismo , Retina/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Internalização do VírusRESUMO
BACKGROUND: Glioblastoma (GBM) is the most lethal brain tumor characterized by high morbidity and limited treatment options. Tumor malignancy is usually associated with the epigenetic marks, which coordinate gene expression to ascertain relevant phenotypes. One of such marks is m6A modification of RNA, whose functional effects are dependent on the YTH family m6A reader proteins. METHODS AND RESULTS: In this study, we investigated the expression of five YTH family proteins in different GBM microarray datasets from the Oncomine database, and identified YTHDF1 as the most highly overexpressed member of this family in GBM. By performing the knockdown of YTHDF1 in a GBM cell line, we found that it positively regulates proliferation, chemoresistance and cancer stem cell-like properties. Musashi-1 (MSI1) is a postranscriptional gene expression regulator associated with high oncogenicity in GBM. By knocking down and overexpressing MSI1, we found that it positively regulates YTHDF1 expression. The inhibitory effects imposed on the processes of proliferation and migration by YTHDF1 knockdown were shown to be partially rescued by concomitant overexpression of MSI1. MSI1 and YTHDF1 were shown to be positively correlated in clinical glioma samples, and their concomitant upregulation was associated with decreased survival of glioma patients. We identified the direct regulation of YTHDF1 by MSI1. CONCLUSIONS: Given the fact that both proteins are master regulators of gene expression, and both of them are unfavorable factors in GBM, we suggest that in any future studies aimed to uncover the prognostic value and therapy potential, these two proteins should be considered together.
RESUMO
The sudden outbreak of 2019 novel coronavirus (2019-nCoV, later named SARS-CoV-2) in Wuhan, China, which rapidly grew into a global pandemic, marked the third introduction of a virulent coronavirus into the human society, affecting not only the healthcare system, but also the global economy. Although our understanding of coronaviruses has undergone a huge leap after two precedents, the effective approaches to treatment and epidemiological control are still lacking. In this article, we present a succinct overview of the epidemiology, clinical features, and molecular characteristics of SARS-CoV-2. We summarize the current epidemiological and clinical data from the initial Wuhan studies, and emphasize several features of SARS-CoV-2, which differentiate it from SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), such as high variability of disease presentation. We systematize the current clinical trials that have been rapidly initiated after the outbreak of COVID-19 pandemic. Whereas the trials on SARS-CoV-2 genome-based specific vaccines and therapeutic antibodies are currently being tested, this solution is more long-term, as they require thorough testing of their safety. On the other hand, the repurposing of the existing therapeutic agents previously designed for other virus infections and pathologies happens to be the only practical approach as a rapid response measure to the emergent pandemic, as most of these agents have already been tested for their safety. These agents can be divided into two broad categories, those that can directly target the virus replication cycle, and those based on immunotherapy approaches either aimed to boost innate antiviral immune responses or alleviate damage induced by dysregulated inflammatory responses. The initial clinical studies revealed the promising therapeutic potential of several of such drugs, including favipiravir, a broad-spectrum antiviral drug that interferes with the viral replication, and hydroxychloroquine, the repurposed antimalarial drug that interferes with the virus endosomal entry pathway. We speculate that the current pandemic emergency will be a trigger for more systematic drug repurposing design approaches based on big data analysis.
Assuntos
Antivirais/uso terapêutico , Betacoronavirus , Infecções por Coronavirus , Fatores Imunológicos/uso terapêutico , Pandemias , Pneumonia Viral , Vacinas Virais , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/imunologia , Betacoronavirus/fisiologia , COVID-19 , Vacinas contra COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Infecções por Coronavirus/virologia , Genoma Viral , Humanos , Imunização Passiva , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Pneumonia Viral/virologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Soroterapia para COVID-19RESUMO
(1) Background: A high incidence of intervening sequence (IVS)4+919 G>A mutation with later-onset cardiac phenotype have been reported in a majority of Taiwan Fabry cohorts. Some evidence indicated that conventional biomarkers failed to predict the long-term progression and therapeutic outcome; (2) Methods: In this study, we constructed an induced pluripotent stem cell (iPSC)-based platform from Fabry cardiomyopathy (FC) patients carrying IVS4+919 G>A mutation to screen for potential targets that may help the conventional treatment; (3) Results: The FC-patient-derived iPSC-differentiated cardiomyocytes (FC-iPSC-CMs) carried an expected IVS4+919 G>A genetic mutation and recapitulated several FC characteristics, including low α-galactosidase A enzyme activity and cellular hypertrophy. The proteomic analysis revealed that arachidonate 12/15-lipoxygenase (Alox12/15) was the most highly upregulated marker in FC-iPSC-CMs, and the metabolites of Alox12/15, 12(S)- and 15(S)-hydroxyeicosatetraenoic acid (HETE), were also elevated in the culture media. Late administration of Alox12/15 pharmacological inhibitor LOXBlock-1 combined with α-galactosidase, but not α-galactosidase alone, effectively reduced cardiomyocyte hypertrophy, the secretion of 12(S)- and 15(S)-HETE and the upregulation of fibrotic markers at the late phase of FC; (4) Conclusions: Our study demonstrates that cardiac Alox12/15 and circulating 12(S)-HETE/15(S)-HETE are involved in the pathogenesis of FC with IVS4+919 G>A mutation.
Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Doença de Fabry/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , alfa-Galactosidase/metabolismo , Adulto , Idoso , Reprogramação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Terapia de Reposição de Enzimas , Doença de Fabry/genética , Feminino , Humanos , Imuno-Histoquímica , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/uso terapêutico , Masculino , Pessoa de Meia-Idade , Mutação , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Galactosidase/genética , alfa-Galactosidase/uso terapêuticoRESUMO
Mesenchymal stem cells (MSCs) differentiated from human induced pluripotent stem cells (iPSC) or induced MSC (iMSCs) are expected to address issues of scalability and safety as well as the difficulty in producing homogenous clinical grade MSCs as demonstrated by the promising outcomes from preclinical and clinical trials, currently ongoing. The assessment of iMSCs based in vitro and in vivo studies have thus far showed more superior performance as compared to that of the primary or native human MSCs, in terms of cell proliferation, expansion capacity, immunomodulation properties as well as the influence of paracrine signaling and exosomal influence in cell-cell interaction. In this chapter, an overview of current well-established methods in generating a sustainable source of iMSCs involving well defined culture media is discussed followed by the properties of iMSC as compared to that of MSC and its promising prospects for continuous development into potential clinical grade applications.
Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Proliferação de Células , Imunomodulação , Projetos de PesquisaRESUMO
Induced pluripotent stem cells (iPSCs) can be differentiated into mesenchymal stem cells (iPSC-MSCs), retinal ganglion cells (iPSC-RGCs), and retinal pigmental epithelium cells (iPSC-RPEs) to meet the demand of regeneration medicine. Since the production of iPSCs and iPSC-derived cell lineages generally requires massive and time-consuming laboratory work, artificial intelligence (AI)-assisted approach that can facilitate the cell classification and recognize the cell differentiation degree is of critical demand. In this study, we propose the multi-slice tensor model, a modified convolutional neural network (CNN) designed to classify iPSC-derived cells and evaluate the differentiation efficiency of iPSC-RPEs. We removed the fully connected layers and projected the features using principle component analysis (PCA), and subsequently classified iPSC-RPEs according to various differentiation degree. With the assistance of the support vector machine (SVM), this model further showed capabilities to classify iPSCs, iPSC-MSCs, iPSC-RPEs, and iPSC-RGCs with an accuracy of 97.8%. In addition, the proposed model accurately recognized the differentiation of iPSC-RPEs and showed the potential to identify the candidate cells with ideal features and simultaneously exclude cells with immature/abnormal phenotypes. This rapid screening/classification system may facilitate the translation of iPSC-based technologies into clinical uses, such as cell transplantation therapy.
Assuntos
Aprendizado Profundo , Células-Tronco Pluripotentes Induzidas , Humanos , Inteligência Artificial , Epitélio Pigmentado da Retina , Diferenciação CelularRESUMO
BACKGROUND: Modifications of lipid metabolism were closely associated with the manifestations and prognosis of coronavirus disease of 2019 (COVID-19). Pre-existing metabolic conditions exacerbated the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection while modulations of aberrant lipid metabolisms alleviated the manifestations. To elucidate the underlying mechanisms, an experimental platform that reproduces human respiratory physiology is required. METHODS: Here we generated induced pluripotent stem cell-derived airway organoids (iPSC-AOs) that resemble the human native airway. Single-cell sequencing (ScRNAseq) and microscopic examination verified the cellular heterogeneity and microstructures of iPSC-AOs, respectively. We subjected iPSC-AOs to SARS-CoV-2 infection and investigated the treatment effect of lipid modifiers statin drugs on viral pathogenesis, gene expression, and the intracellular trafficking of the SARS-CoV-2 entry receptor angiotensin-converting enzyme-2 (ACE-2). RESULTS: In SARS-CoV-2-infected iPSC-AOs, immunofluorescence staining detected the SARS-CoV-2 spike (S) and nucleocapsid (N) proteins and bioinformatics analysis further showed the aberrant enrichment of lipid-associated pathways. In addition, SARS-CoV-2 hijacked the host RNA replication machinery and generated the new isoforms of a high-density lipoprotein constituent apolipoprotein A1 (APOA1) and the virus-scavenging protein deleted in malignant brain tumors 1 (DMBT1). Manipulating lipid homeostasis using cholesterol-lowering drugs (e.g. Statins) relocated the viral entry receptor angiotensin-converting enzyme-2 (ACE-2) and decreased N protein expression, leading to the reduction of SARS-CoV-2 entry and replication. The same lipid modifications suppressed the entry of luciferase-expressing SARS-CoV-2 pseudoviruses containing the S proteins derived from different SARS-CoV-2 variants, i.e. wild-type, alpha, delta, and omicron. CONCLUSIONS: Together, our data demonstrated that modifications of lipid pathways restrict SARS-CoV-2 propagation in the iPSC-AOs, which the inhibition is speculated through the translocation of ACE2 from the cell membrane to the cytosol. Considering the highly frequent mutation and generation of SARS-CoV-2 variants, targeting host metabolisms of cholesterol or other lipids may represent an alternative approach against SARS-CoV-2 infection.
RESUMO
Cystic fibrosis (CF) is a genetic disease affects CFTR channel synthesis. While 90 percent of the CF patients now benefit from small molecule target therapies, this treatment has yet to extend to those bearing nonsense mutations. Studies of these rare mutations using cell lines with native pathological signatures of the disease may lead to breakthroughs in therapeutic development. Here, we report the generation of CF patient-derived induced pluripotent stem cells (iPSCs) carrying a nonsense mutation at position 308 (S308X). The pluripotency and genomic profile of the iPSC line was validated as a resource that can enable future research for CF.
Assuntos
Fibrose Cística , Células-Tronco Pluripotentes Induzidas , Linhagem Celular , Códon sem Sentido/genética , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genéticaRESUMO
The fomite transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn attention because of its highly contagious nature. Therefore, surfaces that can prevent coronavirus contamination are an urgent and unmet need during the coronavirus disease 2019 (COVID-19) pandemic. Conventional surfaces are usually based on superhydrophobic or antiviral coatings. However, these coatings may be dysfunctional because of biofouling, which is the undesired adhesion of biomolecules. A superhydrophobic surface independent of the material content and coating agents may serve the purpose of antibiofouling and preventing viral transmission. Doubly reentrant topology (DRT) is a unique structure that can meet the need. This study demonstrates that the DRT surfaces possess a striking antibiofouling effect that can prevent viral contamination. This effect still exists even if the DRT surface is made of a hydrophilic material such as silicon oxide and copper. To the best of our knowledge, this work first demonstrates that fomite transmission of viruses may be prevented by minimizing the contact area between pathogens and surfaces even made of hydrophilic materials. Furthermore, the DRT geometry per se features excellent antibiofouling ability, which may shed light on the applications of pathogen elimination in alleviating the COVID-19 pandemic.
RESUMO
Autophagy plays a protective role in the retinal pigment epithelium (RPE) by eliminating damaged organelles in response to reactive oxygen species (ROS). Dual-specificity protein phosphatase 6 (DUSP6), which belongs to the DUSP subfamily, works as a negative-feedback regulator of the extracellular signal-regulated kinase (ERK) pathway. However, the complex interplay between DUSP6 and autophagy induced by ROS in RPE is yet to be investigated. To investigate the relationship between DUSP6 and autophagy, we exposed the ARPE-19 cell line and C57BL/6N mice to sodium iodate (NaIO3) as an oxidative stress inducer. Our data showed that the inhibition of DUSP6 activity promotes autophagy flux through the ERK pathway via the upregulation of immunoblotting expression in ARPE-19 cells. Live imaging showed a significant increase in autophagic flux activities, which suggested the restoration autophagy after treatment with the DUSP6 inhibitor. Furthermore, the mouse RPE layer exhibited an irregular structure and abnormal deposits following NaIO3 injection. The retina layer was recovered after being treated with DUSP6 inhibitor; this suggests that DUSP6 inhibitor can rescue retinal damage by restoring the mouse retina's autophagy flux. This study suggests that the upregulation of DUSP6 can cause autophagy flux malfunctions in the RPE. The DUSP6 inhibitor can restore autophagy induction, which may serve as a potential therapeutic approach for retinal degeneration disease.
RESUMO
Circulating tumor cell (CTC) clusters are present in cancer patients with severe metastasis, resulting in poor clinical outcomes. However, CTC clusters have not been studied as extensively as single CTCs, and the clinical utility of CTC clusters remains largely unknown. In this study, we aim sought to explore the feasibility of NanoVelcro Chips to simultaneously detect both single CTCs and CTC clusters with negligible perturbation to their intrinsic properties in neuroendocrine tumors (NETs). We discovered frequent CTC clusters in patients with advanced NETs and examined their potential roles, together with single NET CTCs, as novel biomarkers of patient response following peptide receptor radionuclide therapy (PRRT). We observed dynamic changes in both total NET CTCs and NET CTC cluster counts in NET patients undergoing PRRT which correlated with clinical outcome. These preliminary findings suggest that CTC clusters, along with single CTCs, offer a potential non-invasive option to monitor the treatment response in NET patients undergoing PRRT.
Assuntos
Técnicas Biossensoriais , Células Neoplásicas Circulantes , Tumores Neuroendócrinos , Biomarcadores Tumorais , Humanos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologiaRESUMO
Non-viral gene delivery holds promises for treating inherited diseases. However, the limited cloning capacity of plasmids may hinder the co-delivery of distinct genes to the transfected cells. Previously, the conjugation of maleimide-functionalized polyurethane grafted with small molecular weight polyethylenimine (PU-PEI600-Mal) using 1,6-hexanedithiol (HDT) could promote the co-delivery and extensive co-expression of two different plasmids in target cells. Herein, we designed HDT-conjugated PU-PEI600-Mal for the simultaneous delivery of CRISPR/Cas9 components to achieve efficient gene correction in the induced pluripotent stem cell (iPSC)-derived model of Fabry cardiomyopathy (FC) harboring GLA IVS4 + 919 G > A mutation. This FC in vitro model recapitulated several clinical FC features, including cardiomyocyte hypertrophy and lysosomal globotriaosylceramide (Gb3) deposition. As evidenced by the expression of two reporter genes, GFP and mCherry, the addition of HDT conjugated two distinct PU-PEI600-Mal/DNA complexes and promoted the co-delivery of sgRNA/Cas9 and homology-directed repair DNA template into target cells to achieve an effective gene correction of IVS4 + 919 G > A mutation. PU-PEI600-Mal/DNA with or without HDT-mediated conjugation consistently showed neither the cytotoxicity nor an adverse effect on cardiac induction of transfected FC-iPSCs. After the gene correction and cardiac induction, disease features, including cardiomyocyte hypertrophy, the mis-regulated gene expressions, and Gb3 deposition, were remarkably rescued in the FC-iPSC-differentiated cardiomyocytes. Collectively, HDT-conjugated PU-PEI600-Mal-mediated dual DNA transfection system can be an ideal approach to improve the concurrent transfection of non-viral-based gene editing system in inherited diseases with specific mutations.
RESUMO
Placenta accreta spectrum (PAS) is a high-risk obstetrical condition associated with significant morbidity and mortality. Current clinical screening modalities for PAS are not always conclusive. Here, we report a nanostructure-embedded microchip that efficiently enriches both single and clustered circulating trophoblasts (cTBs) from maternal blood for detecting PAS. We discover a uniquely high prevalence of cTB-clusters in PAS and subsequently optimize the device to preserve the intactness of these clusters. Our feasibility study on the enumeration of cTBs and cTB-clusters from 168 pregnant women demonstrates excellent diagnostic performance for distinguishing PAS from non-PAS. A logistic regression model is constructed using a training cohort and then cross-validated and tested using an independent cohort. The combined cTB assay achieves an Area Under ROC Curve of 0.942 (throughout gestation) and 0.924 (early gestation) for distinguishing PAS from non-PAS. Our assay holds the potential to improve current diagnostic modalities for the early detection of PAS.