Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224541

RESUMO

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Feminino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/complicações , Substância Cinzenta/diagnóstico por imagem
2.
Mol Psychiatry ; 28(5): 2071-2080, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869225

RESUMO

22q11.2 deletion is one of the strongest known genetic risk factors for schizophrenia. Recent whole-genome sequencing of schizophrenia cases and controls with this deletion provided an unprecedented opportunity to identify risk modifying genetic variants and investigate their contribution to the pathogenesis of schizophrenia in 22q11.2 deletion syndrome. Here, we apply a novel analytic framework that integrates gene network and phenotype data to investigate the aggregate effects of rare coding variants and identified modifier genes in this etiologically homogenous cohort (223 schizophrenia cases and 233 controls of European descent). Our analyses revealed significant additive genetic components of rare nonsynonymous variants in 110 modifier genes (adjusted P = 9.4E-04) that overall accounted for 4.6% of the variance in schizophrenia status in this cohort, of which 4.0% was independent of the common polygenic risk for schizophrenia. The modifier genes affected by rare coding variants were enriched with genes involved in synaptic function and developmental disorders. Spatiotemporal transcriptomic analyses identified an enrichment of coexpression between modifier and 22q11.2 genes in cortical brain regions from late infancy to young adulthood. Corresponding gene coexpression modules are enriched with brain-specific protein-protein interactions of SLC25A1, COMT, and PI4KA in the 22q11.2 deletion region. Overall, our study highlights the contribution of rare coding variants to the SCZ risk. They not only complement common variants in disease genetics but also pinpoint brain regions and developmental stages critical to the etiology of syndromic schizophrenia.


Assuntos
Síndrome de DiGeorge , Esquizofrenia , Humanos , Adulto Jovem , Adulto , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Encéfalo , Perfilação da Expressão Gênica , Sequenciamento Completo do Genoma
3.
Hum Brain Mapp ; 43(1): 300-328, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33615640

RESUMO

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.


Assuntos
Encéfalo , Variações do Número de Cópias de DNA , Imageamento por Ressonância Magnética , Transtornos Mentais , Transtornos do Neurodesenvolvimento , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Transtornos Mentais/patologia , Estudos Multicêntricos como Assunto , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
4.
Mol Psychiatry ; 26(8): 4496-4510, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32015465

RESUMO

Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Esquizofrenia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética
5.
Hum Mol Genet ; 28(22): 3724-3733, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884517

RESUMO

The majority (99%) of individuals with 22q11.2 deletion syndrome (22q11.2DS) have a deletion that is caused by non-allelic homologous recombination between two of four low copy repeat clusters on chromosome 22q11.2 (LCR22s). However, in a small subset of patients, atypical deletions are observed with at least one deletion breakpoint within unique sequence between the LCR22s. The position of the chromosome breakpoints and the mechanisms driving those atypical deletions remain poorly studied. Our large-scale, whole genome sequencing study of >1500 subjects with 22q11.2DS identified six unrelated individuals with atypical deletions of different types. Using a combination of whole genome sequencing data and fiber-fluorescence in situ hybridization, we mapped the rearranged alleles in these subjects. In four of them, the distal breakpoints mapped within one of the LCR22s and we found that the deletions likely occurred by replication-based mechanisms. Interestingly, in two of them, an inversion probably preceded inter-chromosomal 'allelic' homologous recombination between differently oriented LCR22-D alleles. Inversion associated allelic homologous recombination (AHR) may well be a common mechanism driving (atypical) deletions on 22q11.2.


Assuntos
Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Recombinação Homóloga/genética , Adulto , Alelos , Pontos de Quebra do Cromossomo , Deleção Cromossômica , Inversão Cromossômica/genética , Mapeamento Cromossômico/métodos , Cromossomos/genética , Cromossomos Humanos Par 22/genética , Feminino , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Duplicações Segmentares Genômicas/genética , Sequenciamento Completo do Genoma/métodos
6.
Mol Psychiatry ; 25(8): 1822-1834, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-29895892

RESUMO

The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.


Assuntos
Córtex Cerebral/patologia , Deleção Cromossômica , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Adolescente , Adulto , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Psicóticos/genética , Adulto Jovem
7.
Genet Med ; 22(1): 132-141, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31363180

RESUMO

PURPOSE: Multimorbidity is increasing in younger adults but is understudied in this population. We used 22q11.2 deletion syndrome (22q11.2DS) as a genetic model to investigate multimorbidity in young to middle-aged adults. METHODS: Using the Anatomical Therapeutic Chemical (ATC) Classification System and setting five or more concurrent prescription medications as a proxy for multimorbidity, we compared data on 264 adults with 22q11.2DS (median age 27.8, range 17.3-68.3 years) with that for a community-based Canadian general population sample (n = 25,287). We used logistic regression to examine possible predictors of multimorbidity in 22q11.2DS. RESULTS: Multimorbidity in 22q11.2DS in the 25-44 year age group (34.7%) was significantly more prevalent than in the general population, both for the same age group (2.9%, prevalence ratio [PR] = 11.9, 95% CI 8.4-17.1) and compared with those aged 45-64 years (16.4%, PR = 2.1, 95% CI 1.6-2.7). Neuropsychiatric and endocrinological medication classes predominated. Within 22q11.2DS, older age and psychotic illness, but not sex, major congenital heart disease, or intellectual disability, were significant predictors of multimorbidity. CONCLUSION: The results indicate that adults with 22q11.2DS have a significant burden of illness with levels of multimorbidity comparable with those of the general population several decades older. In younger adults with multimorbidity, certain disease patterns may help identify genetic disorders in "big data."


Assuntos
Síndrome de DiGeorge/genética , Modelos Genéticos , Multimorbidade , Adolescente , Adulto , Idoso , Canadá/epidemiologia , Estudos de Casos e Controles , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Polimedicação , Prevalência , Adulto Jovem
8.
Genet Med ; 21(10): 2328-2335, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30948858

RESUMO

PURPOSE: Given limited data available on long-term outcomes in 22q11.2 deletion syndrome (22q11.2DS), we investigated mortality risk in adults with this microdeletion syndrome. METHODS: We studied 309 well-characterized adults (age ≥17 years) with 22q11.2DS and their 1014 unaffected parents and siblings, using a prospective case-control design. We used Cox proportional hazards regression modeling and Kaplan-Meier curves to investigate effects of the 22q11.2 deletion and its associated features on all-cause mortality and survival. RESULTS: The 22q11.2 deletion (hazard ratio [HR] 8.86, 95% CI 2.87-27.37) and major congenital heart disease (CHD; HR 5.03, 95% CI 2.27-11.17), but not intellectual disability or psychotic illness, were significant independent predictors of mortality for adults with 22q11.2DS compared with their siblings. Amongst those with 22q11.2DS, there were 31 deaths that occurred at a median age of 46.4 (range 18.1-68.6) years; a substantial minority had outlived both parents. Probability of survival to age 45 years was approximately 72% for those with major CHD, and 95% for those with no major CHD (p < 0.0001). CONCLUSION: For adults with 22q11.2DS, the 22q11.2 deletion and more severe forms of CHD both contribute to a lower life expectancy than family-based expectations. The results have implications for genetic counseling and anticipatory care.


Assuntos
Síndrome de DiGeorge/genética , Síndrome de DiGeorge/mortalidade , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Feminino , Aconselhamento Genético , Cardiopatias Congênitas/genética , Humanos , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
9.
Am J Hum Genet ; 96(5): 753-64, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25892112

RESUMO

The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS.


Assuntos
Variações do Número de Cópias de DNA/genética , Síndrome de DiGeorge/genética , Transportador de Glucose Tipo 3/genética , Cardiopatias Congênitas/genética , Adulto , Aorta Torácica/fisiopatologia , Síndrome de DiGeorge/fisiopatologia , Feminino , Genótipo , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
10.
Am J Med Genet A ; 176(4): 936-944, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575622

RESUMO

Clinical molecular testing has been available for 22q11.2 deletion syndrome (22q11.2DS) for over two decades yet under-recognition and diagnostic delays are common. To characterize the "diagnostic odyssey" in 22q11.2DS we studied 202 well-characterized unrelated adults, none ascertained through an affected relative. We used a regression model to identify clinical and demographic factors associated with length of time to molecular diagnosis. Kaplan-Meier analysis compared time to diagnosis for the molecular testing era (since 1994) and earlier birth cohorts. The results showed that the median time to molecular diagnosis of the 22q11.2 deletion was 4.7 (range 0-20.7) years. Palatal and cardiac anomalies, but not developmental delay/intellectual disability, were associated with a shorter time to molecular diagnosis. Non-European ethnicity was associated with longer time to diagnosis. Inclusion of a cohort from another 22q11.2DS center increased power to observe a significantly earlier diagnosis for patients born in the molecular testing era. Nonetheless, only a minority were diagnosed in the first year of life. On average, patients were seen in seven (range 2-15) different clinical specialty areas prior to molecular diagnosis. The findings indicate that even for those born in the molecular testing era, individuals with 22q11.2DS and their families face a diagnostic odyssey that is often prolonged, particularly in the absence of typical physical congenital features or for those of non-European ancestry. The results support educational efforts to improve clinical recognition and testing, and ultimately newborn screening as a means of maximizing early detection that would provide the best opportunity to optimize outcomes.


Assuntos
Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Síndrome de DiGeorge/mortalidade , Feminino , Testes Genéticos , Humanos , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
11.
Am J Med Genet A ; 176(10): 2172-2181, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30289625

RESUMO

The 22q11.2 deletion syndrome is caused by non-allelic homologous recombination events during meiosis between low copy repeats (LCR22) termed A, B, C, and D. Most patients have a typical LCR22A-D (AD) deletion of 3 million base pairs (Mb). In this report, we evaluated IQ scores in 1,478 subjects with 22q11.2DS. The mean of full scale IQ, verbal IQ, and performance IQ scores in our cohort were 72.41 (standard deviation-SD of 13.72), 75.91(SD of 14.46), and 73.01(SD of 13.71), respectively. To investigate whether IQ scores are associated with deletion size, we examined individuals with the 3 Mb, AD (n = 1,353) and nested 1.5 Mb, AB (n = 74) deletions, since they comprised the largest subgroups. We found that full scale IQ was decreased by 6.25 points (p = .002), verbal IQ was decreased by 8.17 points (p = .0002) and performance IQ was decreased by 4.03 points (p = .028) in subjects with the AD versus AB deletion. Thus, individuals with the smaller, 1.5 Mb AB deletion have modestly higher IQ scores than those with the larger, 3 Mb AD deletion. Overall, the deletion of genes in the AB region largely explains the observed low IQ in the 22q11.2DS population. However, our results also indicate that haploinsufficiency of genes in the LCR22B-D region (BD) exert an additional negative impact on IQ. Furthermore, we did not find evidence of a confounding effect of severe congenital heart disease on IQ scores in our cohort.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 22 , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/psicologia , Adolescente , Adulto , Criança , Feminino , Humanos , Deficiência Intelectual/genética , Testes de Inteligência , Masculino
12.
Brain ; 140(5): 1371-1383, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369257

RESUMO

The recurrent 22q11.2 deletion is a genetic risk factor for early-onset Parkinson's disease. Adults with the associated 22q11.2 deletion syndrome (22q11.2DS) may exhibit phenotypes that could help identify those at highest risk and reveal disease trajectories. We investigated clinical and neuroimaging features relevant to Parkinson's disease in 26 adults: 13 with 22q11.2DS at genetic risk of Parkinson's disease (mean age = 41.5 years, standard deviation = 9.7), 12 healthy age and sex-matched controls, and a 22q11.2DS patient with l-DOPA-responsive early-onset Parkinson's disease. Neuroimaging included transcranial sonography and positron emission tomography using 11C-dihydrotetrabenazine (11C-DTBZ), a radioligand that binds to the presynaptic vesicular monoamine transporter. The 22q11.2DS group without Parkinson's disease demonstrated significant motor and olfactory deficits relative to controls. Eight (61.5%) were clinically classified with parkinsonism. Transcranial sonography showed a significantly larger mean area of substantia nigra echogenicity in the 22q11.2DS risk group compared with controls (P = 0.03). The 22q11.2DS patient with Parkinson's disease showed the expected pattern of severely reduced striatal 11C-DTBZ binding. The 22q11.2DS group without Parkinson's disease however showed significantly elevated striatal 11C-DTBZ binding relative to controls (∼33%; P < 0.01). Results were similar within the 22q11.2DS group for those with (n = 7) and without (n = 6) psychotic illness. These findings suggest that manifestations of parkinsonism and/or evolution to Parkinson's disease in this genetic at-risk population may include a hyperdopaminergic mechanism. Adequately powered longitudinal studies and animal models are needed to evaluate the relevance of the observed clinical and imaging phenotypes to Parkinson's disease and other disorders that are more prevalent in 22q11.2DS, such as schizophrenia.


Assuntos
Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/fisiopatologia , Neuroimagem Funcional , Doença de Parkinson Secundária/diagnóstico , Doença de Parkinson Secundária/fisiopatologia , Adulto , Radioisótopos de Carbono/metabolismo , Estudos de Casos e Controles , Corpo Estriado/metabolismo , Síndrome de DiGeorge/genética , Feminino , Humanos , Hipertrofia/patologia , Masculino , Doença de Parkinson Secundária/complicações , Doença de Parkinson Secundária/genética , Tomografia por Emissão de Pósitrons , Substância Negra/patologia , Tetrabenazina/análogos & derivados , Tetrabenazina/metabolismo , Ultrassonografia Doppler Transcraniana
13.
Genet Med ; 19(2): 204-208, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27537705

RESUMO

PURPOSE: To characterize the prevalence of and contributing factors to adult obesity in the most common recurrent copy-number variation (CNV), 22q11.2 deletion, given that other rare CNVs are known to have obesity phenotypes. METHODS: In 207 adults with 22q11.2 deletion syndrome (22q11.2DS), we used available height and weight measurements to calculate body mass index (BMI) and recorded associated factors that could play a role in obesity. We used the maximum BMI per subject and logistic regression to test a model predicting obesity class. RESULTS: The prevalence of obesity (BMI ≥30) in 22q11.2DS (n = 90, 43.5%; at median age of 26.7 years) was significantly greater than for Canadian norms (odds ratio (OR) 2.30, 95% confidence interval (CI) = 1.74-3.02, P < 0.0001), even after excluding individuals with a history of antipsychotic use. The regression model was significant (P < 0.0001). Psychotropic medication use and age, but not sex or presence of intellectual disability, were associated with higher obesity level. Ten (4.8%) individuals were diagnosed with type 2 diabetes at a median age of 39.5 years; the prevalence was higher in those with obesity (P < 0.01). CONCLUSION: The results suggest that adult obesity is related to the 22q11.2 deletion. The findings expand the potential genetic causes of obesity and have important implications for management of 22q11.2DS.Genet Med 19 2, 204-208.


Assuntos
Síndrome de DiGeorge/epidemiologia , Síndrome de DiGeorge/genética , Obesidade/epidemiologia , Obesidade/genética , Adolescente , Adulto , Fatores Etários , Índice de Massa Corporal , Canadá , Variações do Número de Cópias de DNA/genética , Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/fisiopatologia , Fenótipo , Psicotrópicos/efeitos adversos
14.
Epilepsia ; 58(6): 1095-1101, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28448680

RESUMO

OBJECTIVE: Previous studies examining seizures in patients with 22q11.2 deletion syndrome (22q11.2DS) have focused primarily on children and adolescents. In this study we investigated the prevalence and characteristics of seizures and epilepsy in an adult 22q11.2DS population. METHODS: The medical records of 202 adult patients with 22q11.2DS were retrospectively reviewed for documentation of seizures, electroencephalography (EEG) reports, and magnetic resonance imaging (MRI) findings. Epilepsy status was assigned in accordance with 2010 International League Against Epilepsy Classification. RESULTS: Of 202 patients, 32 (15.8%) had a documented history of seizure. Of these 32, 23 (71.8%) had acute symptomatic seizures, usually associated with hypocalcemia and/or antipsychotic or antidepressant use. Nine patients (9/32, 28%; 9/202, 4%) met diagnostic criteria for epilepsy. Two patients had genetic generalized epilepsy; two patients had focal seizures of unknown etiology; two had epilepsy due to malformations of cortical development; in two the epilepsy was due to acquired structural changes; and in one patient the epilepsy could not be further classified. SIGNIFICANCE: Similarly to children, the prevalence of epilepsy and acute symptomatic seizures in adults with 22q11.2DS is higher than in the general population. Hypocalcemia continues to be a risk factor for adults, but differently from kids, the main cause of seizures in adults with 22q11.2DS is exposure to antipsychotics and antidepressants. Further prospective studies are warranted to investigate how 22q11.2 microdeletion leads to an overall decreased seizure threshold.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/fisiopatologia , Eletroencefalografia , Epilepsia/genética , Epilepsia/fisiopatologia , Convulsões/genética , Convulsões/fisiopatologia , Processamento de Sinais Assistido por Computador , Anormalidades Múltiplas/diagnóstico , Adolescente , Adulto , Idade de Início , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Estudos Transversais , Síndrome de DiGeorge/diagnóstico , Epilepsia/diagnóstico , Feminino , Humanos , Hipocalcemia/complicações , Hipocalcemia/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Convulsões/diagnóstico , Adulto Jovem
15.
Hum Genet ; 135(3): 273-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26742502

RESUMO

The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60-75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients.


Assuntos
Variações do Número de Cópias de DNA , Síndrome de DiGeorge/genética , Cardiopatias Congênitas/genética , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/diagnóstico , Técnicas de Genotipagem , Cardiopatias Congênitas/diagnóstico , Humanos
16.
Genet Med ; 18(4): 350-5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26087175

RESUMO

PURPOSE: Schizophrenia occurs in 20-25% of adults with 22q11.2 deletion syndrome (22q11.2DS). General population studies of schizophrenia report associations with perinatal complications, although effect sizes are generally low. We aimed to determine whether such factors are associated with expression of schizophrenia in individuals with 22q11.2DS. METHODS: We investigated the relationship of small for gestational age (SGA) birth weight (<3rd percentile for sex and gestational age) and prematurity (<37 weeks gestation) to expression of schizophrenia in a well-characterized cohort of 123 adults with 22q11.2DS. Outcome measures included adjusted odds ratios and positive and negative predictive values (PPV and NPV) for schizophrenia. RESULTS: SGA birth weight (OR = 3.52, 95% CI = 1.34-9.22) and prematurity (OR = 5.38, 95% CI = 1.63-17.75), but not maternal factors, were significant risk factors for schizophrenia in 22q11.2DS. Being born SGA or premature resulted in a PPV of 46% for schizophrenia; NPV in the absence of both features was 83%. Post hoc analyses suggested these perinatal complications were also associated with factors indicative of increased severity of schizophrenia. CONCLUSION: In 22q11.2DS, fetal growth and gestation may have a clinically significant impact on future risk for schizophrenia. These data advance our understanding of determinants of disease-specific expression in 22q11.2DS, with implications for other genomic disorders.Genet Med 18 4, 350-355.


Assuntos
Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/genética , Desenvolvimento Fetal , Idade Gestacional , Fenótipo , Esquizofrenia/diagnóstico , Esquizofrenia/etiologia , Adulto , Peso ao Nascer , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/epidemiologia , Feminino , Retardo do Crescimento Fetal , Humanos , Masculino , Prognóstico , Fatores de Risco , Esquizofrenia/epidemiologia , Índice de Gravidade de Doença , Adulto Jovem
17.
Hum Mol Genet ; 22(22): 4485-501, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23813976

RESUMO

Individually rare, large copy number variants (CNVs) contribute to genetic vulnerability for schizophrenia. Unresolved questions remain, however, regarding the anticipated yield of clinical microarray testing in schizophrenia. Using high-resolution genome-wide microarrays and rigorous methods, we investigated rare CNVs in a prospectively recruited community-based cohort of 459 unrelated adults with schizophrenia and estimated the minimum prevalence of clinically significant CNVs that would be detectable on a clinical microarray. A blinded review by two independent clinical cytogenetic laboratory directors of all large (>500 kb) rare CNVs in cases and well-matched controls showed that those deemed to be clinically significant were highly enriched in schizophrenia (16.4-fold increase, P < 0.0001). In a single community catchment area, the prevalence of individuals with these CNVs was 8.1%. Rare 1.7 Mb CNVs at 2q13 were found to be significantly associated with schizophrenia for the first time, compared with the prevalence in 23 838 population-based controls (42.9-fold increase, P = 0.0002). Additional novel findings that will facilitate the future clinical interpretation of smaller CNVs in schizophrenia include: (i) a greater proportion of individuals with two or more rare exonic CNVs >10 kb in size (1.5-fold increase, P = 0.0109) in schizophrenia; (ii) the systematic discovery of new candidate genes for schizophrenia; and, (iii) functional gene enrichment mapping highlighting a differential impact in schizophrenia of rare exonic deletions involving diverse functions, including neurodevelopmental and synaptic processes (4.7-fold increase, P = 0.0060). These findings suggest consideration of a potential role for clinical microarray testing in schizophrenia, as is now the suggested standard of care for related developmental disorders like autism.


Assuntos
Variações do Número de Cópias de DNA , Predisposição Genética para Doença , Variação Genética , Análise de Sequência com Séries de Oligonucleotídeos , Esquizofrenia/genética , Adulto , Cromossomos Humanos Par 2 , Éxons , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prevalência , Estudos Prospectivos , Esquizofrenia/epidemiologia , Esquizofrenia/patologia , Deleção de Sequência
18.
Genet Med ; 17(8): 599-609, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25569435

RESUMO

22q11.2 Deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans, estimated to affect up to 1 in 2,000 live births. Major features of this multisystem condition include congenital anomalies, developmental delay, and an array of early- and later-onset medical and psychiatric disorders. Advances in pediatric care ensure a growing population of adults with 22q11.2DS. Informed by an international panel of multidisciplinary experts and a comprehensive review of the existing literature concerning adults, we present the first set of guidelines focused on managing the neuropsychiatric, endocrine, cardiovascular, reproductive, psychosocial, genetic counseling, and other issues that are the focus of attention in adults with 22q11.2DS. We propose practical strategies for the recognition, evaluation, surveillance, and management of the associated morbidities.Genet Med 17 8, 599-609.


Assuntos
Síndrome de DiGeorge/terapia , Adulto , Deleção Cromossômica , Cromossomos Humanos Par 22 , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Feminino , Testes Genéticos , Humanos , Masculino , Guias de Prática Clínica como Assunto
19.
Br J Psychiatry ; 206(6): 484-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25745132

RESUMO

BACKGROUND: Genetic testing in psychiatry promises to improve patient care through advances in personalised medicine. However, there are few clinically relevant examples. AIMS: To determine whether patients with a well-established genetic subtype of schizophrenia show a different response profile to the antipsychotic clozapine than those with idiopathic schizophrenia. METHOD: We retrospectively studied the long-term safety and efficacy of clozapine in 40 adults with schizophrenia, half with a 22q11.2 deletion (22q11.2DS group) and half matched for age and clinical severity but molecularly confirmed to have no pathogenic copy number variant (idiopathic group). RESULTS: Both groups showed similar clinical improvement and significant reductions in hospitalisations, achieved at a lower median dose for those in the 22q11.2DS group. Most common side-effects were similarly prevalent between the two groups, however, half of the 22q11.2DS group experienced at least one rare serious adverse event compared with none of the idiopathic group. Many were successfully retried on clozapine. CONCLUSIONS: Individuals with 22q11.2DS-schizophrenia respond as well to clozapine treatment as those with other forms of schizophrenia, but may represent a disproportionate number of those with serious adverse events, primarily seizures. Lower doses and prophylactic (for example anticonvulsant) management strategies can help ameliorate side-effect risks. This first systematic evaluation of antipsychotic response in a genetic subtype of schizophrenia provides a proof-of-principle for personalised medicine and supports the utility of clinical genetic testing in schizophrenia.


Assuntos
Antipsicóticos/administração & dosagem , Clozapina/administração & dosagem , Esquizofrenia/tratamento farmacológico , Adulto , Antipsicóticos/efeitos adversos , Clozapina/efeitos adversos , Síndrome de DiGeorge/tratamento farmacológico , Síndrome de DiGeorge/genética , Relação Dose-Resposta a Droga , Substituição de Medicamentos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Miocardite/induzido quimicamente , Neutropenia/induzido quimicamente , Esquizofrenia/genética , Convulsões/induzido quimicamente , Resultado do Tratamento , Adulto Jovem
20.
J Genet Couns ; 24(5): 810-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25579115

RESUMO

22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans. Survival to reproductive age and beyond is now the norm. Several manifestations of this syndrome, such as congenital cardiac disease and neuropsychiatric disorders, may increase risk for adverse pregnancy outcomes in the general population. However, there are limited data on reproductive health in 22q11.2DS. We performed a retrospective chart review for 158 adults with 22q11.2DS (75 male, 83 female; mean age 34.3 years) and extracted key variables relevant to pregnancy and reproductive health. We present four illustrative cases as brief vignettes. There were 25 adults (21 > age 35 years; 21 female) with a history of one or more pregnancies. Outcomes for women with 22q11.2DS, compared with expectations for the general population, showed a significantly elevated prevalence of small for gestational age liveborn offspring (p < 0.001), associated mainly with infants with 22q11.2DS. Stillbirths also showed elevated prevalence (p < 0.05). Not all observed adverse events appeared to be attributable to transmission of the 22q11.2 deletion. Recurring issues relevant to reproductive health in 22q11.2DS included the potential impact of maternal morbidities, inadequate social support, unsafe sexual practices, and delayed diagnosis of 22q11.2DS and/or lack of genetic counseling. These preliminary results emphasize the importance of early diagnosis and long term follow-up that could help facilitate genetic counseling for men and women with 22q11.2DS. We propose initial recommendations for pre-conception management, educational strategies, prenatal planning, and preparation for possible high-risk pregnancy and/or delivery.


Assuntos
Síndrome de DiGeorge/epidemiologia , Aconselhamento Genético/estatística & dados numéricos , Complicações na Gravidez/epidemiologia , Resultado da Gravidez/epidemiologia , Saúde Reprodutiva/estatística & dados numéricos , Adulto , Comorbidade , Síndrome de DiGeorge/genética , Feminino , Cardiopatias Congênitas/epidemiologia , Humanos , Masculino , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/prevenção & controle , Resultado da Gravidez/genética , Cuidado Pré-Natal/estatística & dados numéricos , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA