RESUMO
Successful intestinal infection by Salmonella requires optimized invasion of the gut epithelium, a function that is energetically costly. Salmonella have therefore evolved to intricately regulate the expression of their virulence determinants by utilizing specific environmental cues. Here we show that a powerful repressor of Salmonella invasion, a cis-2 unsaturated long chain fatty acid, is present in the murine large intestine. Originally identified in Xylella fastidiosa as a diffusible signal factor for quorum sensing, this fatty acid directly interacts with HilD, the master transcriptional regulator of Salmonella, and prevents hilA activation, thus inhibiting Salmonella invasion. We further identify the fatty acid binding region of HilD and show it to be selective and biased in favour of signal factors with a cis-2 unsaturation over other intestinal fatty acids. Single mutation of specific HilD amino acids to alanine prevented fatty acid binding, thereby alleviating their repressive effect on invasion. Together, these results highlight an exceedingly sensitive mechanism used by Salmonella to colonize its host by detecting and exploiting specific molecules present within the complex intestinal environment.
Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos Insaturados/metabolismo , Intestinos/microbiologia , Neoplasias Laríngeas/microbiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Regulação Bacteriana da Expressão Gênica , Humanos , Intestinos/fisiologia , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/metabolismo , Infecções por Salmonella/patologia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Células Tumorais Cultivadas , VirulênciaRESUMO
Invasion of the intestinal epithelium is an essential but energetically expensive survival strategy and is, therefore, tightly regulated by using specific cues from the environment. The enteric pathogen Salmonella controls its invasion machinery through the elegant coordination of three AraC-type transcription activators, HilD, HilC, and RtsA. Most environmental signals target HilD to control invasion, whereas HilC and RtsA are known only to augment these effects on HilD. Here we show that a fatty acid found in the murine colon, cis-2-hexadecenoic acid (c2-HDA), represses Salmonella invasion by directly targeting HilC and RtsA, in addition to HilD. c2-HDA directly binds each of these regulators and inhibits their attachment to DNA targets, repressing invasion even in the absence of HilD. Fatty acid binding, however, does not affect HilC and RtsA protein stability, unlike HilD. Importantly, we show that HilC and RtsA are highly effective in restoring HilD production and invasion gene expression after elimination of the repressive fatty acid c2-HDA. Together, these results illuminate a precise mechanism by which HilC and RtsA may modulate invasion as Salmonella navigates through different regions of the intestine, contributing to our understanding of how this enteric pathogen senses and adapts to a diverse intestinal environment while maintaining its virulence.
Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Intestinos/metabolismo , Ácidos Palmíticos/metabolismo , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/genética , Ilhas Genômicas , Interações Hospedeiro-Patógeno , Humanos , Intestinos/microbiologia , Camundongos , Ligação Proteica , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Fatores de Transcrição/genética , VirulênciaRESUMO
Virulence functions of bacterial pathogens are often energetically costly and thus are subjected to intricate regulatory mechanisms. In Salmonella, invasion of the intestinal epithelium, an essential early step in virulence, requires the production of a multi-protein type III secretion apparatus. The pathogen mitigates the overall cost of invasion by inducing it in only a fraction of its population. This constitutes a successful virulence strategy as invasion by a small number is sufficient to promote the proliferation of the non-invading majority. Such a system suggests the existence of a sensitive triggering mechanism that permits only a minority of Salmonella to reach a threshold of invasion-gene induction. We show here that the secondary structure of the invasion regulator hilD message provides such a trigger. The 5' end of the hilD mRNA is predicted to contain two mutually exclusive stem-loop structures, the first of which (SL1) overlaps the ribosome-binding site and the ORF start codon. Changes that reduce its stability enhance invasion gene expression, while those that increase stability reduce invasion. Conversely, disrupting the second stem-loop (SL2) represses invasion genes. Although SL2 is the energetically more favorable, repression through SL1 is enhanced by binding of the global regulator CsrA. This system thus alters the levels of hilD mRNA and is so sensitive that changing a single base pair within SL1, predicted to augment its stability, eliminates expression of invasion genes and significantly reduces Salmonella virulence in mice. This system thus provides a possible means to rapidly and finely tune an essential virulence function.
Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Mensageiro/química , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Fatores de Transcrição/genética , Virulência , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Estabilidade de RNA , RNA Bacteriano/genética , RNA Mensageiro/genética , Infecções por Salmonella/genética , Infecções por Salmonella/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Typhoid is a life-threatening febrile illness that affects ~24.2 million people worldwide and is caused by the intracellular bacteria Salmonella Typhi (S. Typhi). Intestinal epithelial invasion by S. Typhi is essential for the establishment of successful infection and is traditionally believed to depend on Salmonella pathogenicity island 1-encoded type 3 secretion system 1 (T3SS-1). We had previously reported that bacterial outer membrane protein T2942/STIV functions as a standalone invasin and contributes to the pathogenesis of S. Typhi by promoting epithelial invasion independent of T3SS-1 (Cell Microbiol, 2015). Here, we show that STIV, by using its 20-amino-acid extracellular loop, interacts with receptor tyrosine kinase, Met, of host intestinal epithelial cells. This interaction leads to Met phosphorylation and activation of a downstream signalling cascade, involving Src, phosphatidylinositol 3-kinase/Akt, and Rac1, which culminates into localized actin polymerisation and bacterial engulfment by the cell. Inhibition of Met tyrosine kinase activity severely limited intestinal invasion and systemic infection by S. Typhi in vivo, highlighting the importance of this invasion pathway in disease progression. This is the first report elucidating the mechanism of T3SS-1-independent epithelial invasion of S. Typhi, and this crucial host-pathogen interaction may be targeted therapeutically to restrict pathogenesis.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Endocitose , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-met/metabolismo , Salmonella typhi/crescimento & desenvolvimento , Febre Tifoide/fisiopatologia , Actinas/metabolismo , Linhagem Celular , Humanos , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Transdução de SinaisRESUMO
Adhesion and invasion of Intestinal Epithelial Cells (IECs) are critical for the pathogenesis of Salmonellaâ Typhi, the aetiological agent of human typhoid fever. While type three secretion system-1 (T3SS-1) is a major invasion apparatus of Salmonella, independent invasion mechanisms were described for non-typhoidal Salmonellae. Here, we show that T2942, an AIL-like protein of S. Typhi Ty2 strain, is required for adhesion and invasion of cultured IECs. That invasion was T3SS-1 independent was proved by ectopic expression of T2942 in the non-invasive E. coli BL21 and double-mutant Ty2 (Ty2Δt2942ΔinvG) strains. Laminin and fibronectin were identified as the host-binding partners of T2942 with higher affinity for laminin. Standalone function of T2942 was confirmed by cell adhesion of the recombinant protein, while the protein or anti-T2942 antiserum blocked adhesion/invasion of S. Typhi, indicating specificity. A 20-amino acid extracellular loop was required for invasion, while several loop regions of T2942 contributed to adhesion. Further, T2942 cooperates with laminin-binding T2544 for adhesion and T3SS-1 for invasion. Finally, T2942 was required and synergistically worked with T3SS-1 for pathogenesis of S. Typhi in mice. Considering wide distribution of T2942 among clinical strains, the protein or the 20-mer peptide may be suitable for vaccine development.
Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Endocitose , Interações Hospedeiro-Patógeno , Salmonella typhi/fisiologia , Análise Mutacional de DNA , Escherichia coli/genética , Escherichia coli/fisiologia , Fibronectinas/metabolismo , Expressão Gênica , Células HT29 , Humanos , Laminina/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Functionalizing cotton to induce biological activity is a viable approach for developing wound dressing. This study explores the development of cotton-based wound dressing through coating with biologically active nanofibers. Bioactive compounds like lawsone offer dual benefits of wound healing and infection prevention, however, their limited solubility and viability hinder their applications. To address this, Hydroxypropyl-beta-cyclodextrin (HP-ß-CD) and Hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were employed. Inclusion complexations of CD/lawsone were achieved at 2:1 and 4:1 M ratios, followed by the fabrication of CD/lawsone nanofibrous systems via electrospinning. Phase solubility studies indicated a twofold increase in lawsone water-solubility with HP-ß-CD. Electrospinning yielded smooth and uniform nanofibers with an average diameter of â¼300-700 nm. The results showed that while specific crystalline peaks of lawsone are apparent in the samples with a 2:1 M ratio, they disappeared in 4:1, indicating complete complexation. The nanofibers exhibited â¼100 % loading efficiency of lawsone and its rapid release upon dissolution. Notably, antibacterial assays demonstrated the complete elimination of Escherichia coli and Staphylococcus aureus colonies. The CD/lawsone nanofibers also showed suitable antioxidant activity ranging from 50 % to 70 %. This integrated approach effectively enhances lawsone's solubility through CD complexation and offers promise for bilayer cotton-based wound dressings.
Assuntos
Ciclodextrinas , Nanofibras , Naftoquinonas , Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Solubilidade , BandagensRESUMO
Quercetin, recognized for its antioxidant, anti-inflammatory, and antibacterial properties, faces limited biomedical application due to its low solubility. Cotton, a preferred wound dressing material over synthetic ones, lacks inherent antibacterial and wound-healing attributes and can benefit from quercetin features. This study explores the potential of overcoming these challenges through the inclusion complexation of quercetin with cyclodextrins (CDs) and the development of a nanofibrous coating on a cotton nonwoven textile. Hydroxypropyl-beta-cyclodextrin (HP-ß-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) formed inclusion complexes of quercetin, with chitosan added to enhance antibacterial properties. Phase solubility results showed that inclusion complexation can enhance quercetin solubility up to 20 times, with HP-γ-CD forming a more stable inclusion complexation compared with HP-ß-CD. Electrospinning of the nanofibers from HP-ß-CD/Quercetin and HP-γ-CD/Quercetin aqueous solutions without the use of a polymeric matrix yielded a uniform, smooth fiber morphology. The structural and thermal analyses of the HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers confirmed the presence of inclusion complexes between quercetin and each of the CDs (HP-ß-CD and HP-γ-CD). Moreover, HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed a near-complete loading efficiency of quercetin and followed a fast-releasing profile of quercetin. Both HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed significantly higher antioxidant activity compared to pristine quercetin. The HP-ß-CD/Quercetin and HP-γ-CD/Quercetin nanofibers also showed antibacterial activity, and with the addition of chitosan in the HP-γ-CD/Quercetin system, the Chitosan/HP-γ-CD/Quercetin nanofibers completely eliminated the investigated bacteria species. The nanofibers were nontoxic and well-tolerated by cells, and exploiting the quercetin and chitosan anti-inflammatory activities resulted in the downregulation of IL-6 and NO secretion in both immune as well as regenerative cells. Overall, CD inclusion complexation markedly enhances quercetin solubility, resulting in a biofunctional antioxidant, antibacterial, and anti-inflammatory wound dressing through a nanofibrous coating on cotton textiles.
Assuntos
Antibacterianos , Anti-Inflamatórios , Antioxidantes , Bandagens , Quitosana , Ciclodextrinas , Teste de Materiais , Nanofibras , Quercetina , Quercetina/farmacologia , Quercetina/química , Antioxidantes/farmacologia , Antioxidantes/química , Nanofibras/química , Quitosana/química , Quitosana/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Tamanho da Partícula , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Fibra de Algodão , Cicatrização/efeitos dos fármacos , Humanos , Picratos/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Compostos de BifeniloRESUMO
The enteric pathogens have evolved to utilize elements from their surroundings to optimize their infection strategies. A common mechanism to achieve this is to employ intestinal compounds as signals to control the activity of a master regulator of virulence. Shigella flexneri (S. flexneri) is a highly infectious entero-invasive pathogen which requires very few organisms to cause invasion of the colonic mucosa. The invasion program is controlled by the virulence master regulator VirF. Here, we show that the fatty acids commonly found in the colon can be exploited by S. flexneri to repress its virulence, allowing it to energetically finance its proliferation, thus increasing its pathogenicity. Colonic fatty acids such as oleic, palmitoleic and cis-2-hexadecenoic acid were shown to directly bind to VirF and mediate its prompt degradation. These fatty acids also disrupted the ability of VirF to bind to its target DNA, suppressing the transcription of the downstream virulence genes and significantly reducing the invasion of S. flexneri to colonic epithelial cells. Treatment with colonic fatty acids significantly increased the growth rate of the pathogen only under invasion-inducing conditions, showing that the reduction in the burden of virulence promotes a growth advantage. These results demonstrate the process by which S. flexneri can employ intestinal compounds as signals to increase its numbers at its preferred site of invasion, highlighting the mechanism by which the full spectrum of shigellosis is achieved despite a miniscule infectious dose. This highlights an elegant model of environmental adaption by S. flexneri to maximize the pathogenic benefit.
Assuntos
Microbioma Gastrointestinal , Shigella flexneri , Shigella flexneri/genética , Virulência , Intestinos , Ácidos GraxosRESUMO
The intestine is a complex, ever-changing environment replete with an array of signaling molecules. To colonize such a complex organ, pathogens have adapted to utilize specific cues from the local environment to intricately regulate the expression of their virulence determinants. Salmonella preferentially colonizes the distal ileum, a niche enriched in the metabolite formic acid. Here, we show that the relatively higher concentration of this metabolite in the distal ileum prevents other signals from repressing Salmonella invasion in that region. We show that imported and unmetabolized formic acid functions as a cytoplasmic signal that competitively binds to HilD, the master transcriptional regulator of Salmonella invasion, thus preventing repressive fatty acids from binding to the protein. This results in an increased lifetime of HilD and subsequent derepression of invasion genes. This study demonstrates an important mechanism by which Salmonella utilizes competition among signals in the gut to its advantage as a pathogen. IMPORTANCE Enteric pathogens acutely sense their environment for signals to regulate their virulence functions. We demonstrate here that the enteric pathogen Salmonella utilizes the competition among certain regional intestinal constituents to modulate its virulence determinants in that region. We show that the high concentration of formic acid in the ileum outcompetes other signals and triggers the activation of virulence genes in the ileum. This study shows a delicate spatial and temporal mechanism by which enteric pathogens may utilize the competition among environmental cues to optimize their pathogenicity.
Assuntos
Proteínas de Bactérias , Salmonella typhimurium , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Virulência/genética , Fatores de Virulência/genética , Regulação Bacteriana da Expressão GênicaRESUMO
The complex chemical environment of the intestine is defined largely by the metabolic products of the resident microbiota. Enteric pathogens, elegantly evolved to thrive in the gut, use these chemical products as signals to recognize specific niches and to promote their survival and virulence. Our previous work has shown that a specific class of quorum-sensing molecules found within the gut, termed diffusible signal factors (DSF), signals the repression of Salmonella tissue invasion, thus defining a means by which this pathogen recognizes its location and modulates virulence to optimize its survival. Here, we determined whether the recombinant production of a DSF could reduce Salmonella virulence in vitro and in vivo. We found that the most potent repressor of Salmonella invasion, cis-2-hexadecenoic acid (c2-HDA), could be recombinantly produced in E. coli by the addition of a single exogenous gene encoding a fatty acid enoyl-CoA dehydratase/thioesterase and that co-culture of the recombinant strain with Salmonella potently inhibited tissue invasion by repressing Salmonella genes required for this essential virulence function. Using the well characterized E. coli Nissle 1917 strain and a chicken infection model, we found that the recombinant DSF-producing strain could be stably maintained in the large intestine. Further, challenge studies demonstrated that this recombinant organism could significantly reduce Salmonella colonization of the cecum, the site of carriage in this animal species. These findings thus describe a plausible means by which Salmonella virulence may be affected in animals by in situ chemical manipulation of functions essential for colonization and virulence.
Despite our best efforts, infections of agricultural animals with Salmonella persist, posing threats to food safety. Few, if any, measures have proven effective in reducing Salmonella carriage in animals used for food, a major source of this pathogen. Antibiotics are ineffective at curtailing infection and have served only to exacerbate the global crisis of antimicrobial resistance. The alternative then is to seek novel means to reduce Salmonella disease and carriage by preventing its colonization of livestock and poultry. Here we describe an approach targeting invasion, a function essential for Salmonella carriage and disease in animals. We show that a potent chemical inhibitor of invasion, the diffusible signal factor cis-2 hexadecenoic acid, can be produced by recombinant E. coli strains capable of stably colonizing the animal intestine, providing a means to directly affect the virulence of Salmonella within an animal host. These studies may thus provide a route to reduce the carriage of this pathogen in production animals and thus the spread of disease to humans.
Assuntos
Microbioma Gastrointestinal , Salmonelose Animal , Animais , Escherichia coli/genética , Salmonella/genética , Virulência , Percepção de QuorumRESUMO
Tetracycline is a widely used antibiotic suffering from poor water solubility and low bioavailability. Here, hydroxypropyl-beta-cyclodextrin (HPßCD) was used to form inclusion complexes (IC) of tetracycline with 2:1 M ratio (CD:drug). Then, tetracycline-HPßCD-IC was mixed with pullulan- a non-toxic, water-soluble biopolymer - to form nanofibrous webs via electrospinning. The electrospinning of pullulan/tetracycline-HPßCD-IC was yielded into defect-free nanofibers collected in the form of a self-standing and flexible material with the loading capacity of â¼ 7.7 % (w/w). Pullulan/tetracycline nanofibers was also generated as control sample having the same drug loading. Tetracycline was found in the amorphous state in case of pullulan/tetracycline-HPßCD nanofibers due to inclusion complexation. Through inclusion complexation with HPßCD, enhanced aqueous solubility and faster release profile were provided for pullulan/tetracycline-HPßCD-IC nanofibers compared to pullulan/tetracycline one. Additionally, pullulan/tetracycline-HPßCD-IC nanofibers readily disintegrated when wetted with artificial saliva while pullulan/tetracycline nanofibers were not completely absorbed by the same simulate environment. Electrospun nanofibers showed promising antibacterial activity against both gram-positive and gram-negative bacteria. Briefly, our findings indicated that pullulan/tetracycline-HPßCD-IC nanofibers could be an attractive material as orally fast disintegrating drug delivery system for the desired antibiotic treatment thanks to its promising physicochemical and antibacterial properties.
Assuntos
Ciclodextrinas , Nanofibras , 2-Hidroxipropil-beta-Ciclodextrina , Antibacterianos/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Glucanos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Solubilidade , Tetraciclina/farmacologiaRESUMO
Enteric fever, caused by Salmonella enterica serovars, Typhi (S. Typhi) and Paratyphi (S. Paratyphi) is a major public health challenge for the developing nations. Globally, the disease affects Ë15-30 million individuals every year, resulting in >200,000 deaths. Multidrug-resistant S. Typhi H58 strain has emerged as the dominant circulating strain in a large part of the world and an extensively drug-resistant (XDR) subclade of the strain was recently reported. Many believe that vaccination of the susceptible populations is urgently needed and the best option to control the infection. However, the commercial live attenuated (Ty21a) vaccine is not recommended for children below six years of age while the Vi-polysaccharide-based vaccine has poor long-term efficacy against typhoid fever. Moreover, no vaccines are available against S. Paratyphi infection. Thus, a new formulation capable of providing long term protection against both the pathogens and safe for all age groups is immediately required. We show that recombinant, S. Typhi outer membrane protein STIV (rSTIV) is immunogenic in mice and elicits high serum titers of different immunoglobulin subtypes. STIV antibodies opsonize S. Typhi and S. Paratyphi A to promote antibody-dependent cellular cytotoxicity and complement-mediated lysis. Immunization with rSTIV also induces robust cell-mediated immunity, including antigen-specific T cell proliferation and cytotoxic T lymphocyte response. Finally, mice immunized with rSTIV are significantly protected against S. Typhi and S. Paratyphi A challenge, with reduced visceral bacterial load. Our results underscore the potential of rSTIV as a novel vaccine candidate for enteric fever.
Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Linfócitos T CD8-Positivos/imunologia , Febre Paratifoide/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhi/fisiologia , Febre Tifoide/imunologia , Animais , Anticorpos Antibacterianos/sangue , Citotoxicidade Celular Dependente de Anticorpos , Proteínas da Membrana Bacteriana Externa/genética , Linhagem Celular Tumoral , Proliferação de Células , Citotoxicidade Imunológica , Humanos , Imunidade Humoral , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genéticaRESUMO
Gram negative enteric bacteria, Salmonella enterica serovar Typhi (S. Typhi), the etiological agent of typhoid fever is a major public health problem in developing countries. While a permanent solution to the problem would require improved sanitation, food and water hygiene, controlling the infection by vaccination is urgently required due to the emergence of multidrug resistant strains in multiple countries. The currently licensed vaccines are moderately efficacious with limited applicability, and no recommended vaccines exist for younger children. We had previously reported that a candidate vaccine based on recombinant outer membrane protein (rT2544) of S. Typhi is highly immunogenic and protective in mice. Here we show that rT2544-specific antiserum is capable of mediating bacterial lysis by the splenocytes through Antibody-Dependent Cellular Cytotoxicity (ADCC). Increased populations of rT2544-specific IgA and IgG secreting plasma cells are found in the spleen, mesenteric lymph nodes and peyer's patches. Cell-Mediated Immune Responses (CMIR) induced by rT2544 consist of Th1 cell differentiation and generation of cytotoxic T lymphocytes (CTL), which produce IFN-γ and are capable of destroying cells displaying T2544-derived antigens. rT2544 elicits pro-inflammatory cytokines (TNF-α, IL-6) from Bone Marrow-Derived Dendritic cells (BMDCs), while in vitro re-stimulation of rT2544-primed CD4+ T cells induces cell proliferation and generates higher amounts of Th1 cytokines, such as IFN-gamma, TNF-α and IL-2. Finally, the candidate vaccine induces immunological memory in the form of memory B and T lymphocytes. Taken together, the study further supports the potential of rT2544 as a novel and improved vaccine candidate against S. Typhi.
Assuntos
Imunidade Celular , Imunidade Humoral , Memória Imunológica , Vacinas contra Salmonella/imunologia , Salmonella typhi/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Imunoglobulina G/sangue , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-2/biossíntese , Interleucina-2/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Camundongos , Polissacarídeos Bacterianos/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/genética , Salmonella typhi/química , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia , Febre Tifoide/prevenção & controle , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologiaRESUMO
Although nanoparticle-tagged antimicrobal peptides have gained considerable importance in recent years, their structure-function correlation has not yet been explored. Here, we have studied the mechanism of action of a designed antimicrobial peptide, VG16KRKP (VARGWKRKCPLFGKGG), delivered via gold nanoparticle tagging against Salmonella infection by combining biological experiments with high- and low-resolution spectroscopic techniques. In comparison with the free VG16KRKP peptide or gold nanoparticle alone, the conjugated variant, Au-VG16KRKP, is non-cytotoxic to eukaryotic cells, but exhibits strong bacteriolytic activity in culture. Au-VG16KRKP can penetrate host epithelial and macrophage cells as well as interact with intracellular S. Typhi LPS under both in vitro and in vivo conditions. Treatment of mice with Au-VG16KRKP post-infection with S. Typhi resulted in reduced intracellular bacterial recovery and highly enhanced protection against S. Typhi challenge. The three-dimensional high resolution structure of nanoparticle conjugated VG16KRKP depicted the generation of a well-separated amphipathic structure with slight aggregation, responsible for the increase of the local concentration of the peptide, thus leading to potent activity. This is the first report on the structural and functional characterization of a nanoparticle conjugated synthetic antimicrobial peptide that can kill intracellular pathogens and eventually protect against S. Typhi challenge in vivo.