Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 109(4): 789-803, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797933

RESUMO

The shikimate pathway plays a central role in the biosynthesis of aromatic amino acids and specialized metabolites in plants. The first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) serves as a key regulatory point for the pathway in various organisms. These enzymes are important in regulating the shikimate pathway in multiple microbial systems. The mechanism of regulation of DAHPS is poorly understood in plants, and the role of tyrosine (Tyr) with respect to the three DAHPS isozymes from Arabidopsis thaliana was investigated. In vitro enzymatic analyses established that Tyr does not function as an allosteric regulator for the A. thaliana DAHPS isozymes. In contrast, Arabidopsis T-DNA insertional mutants for the DAHPS1 locus, dahps1, are hypersensitive to elevated Tyr. Tyr hypersensitivity can be reversed with tryptophan and phenylalanine supplementation, indicating that Tyr is affecting the shikimate pathway flux in the dahps1 mutant. Tyr treatment of Arabidopsis seedlings showed reduced accumulation of overexpressed DAHPS2 in the chloroplast. Further, bimolecular fluorescence complementation studies revealed that DAHPS2 interacts with a 14-3-3 protein in the cytosol, and this interaction is enhanced with Tyr treatment. This interaction with 14-3-3 may retain DAHPS2 in the cytosol, which prevents its ability to function in the chloroplast with elevated Tyr.


Assuntos
Arabidopsis/metabolismo , Citosol/metabolismo , Tirosina/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Regulação Alostérica , Arabidopsis/genética , Cristalografia por Raios X , Fosfatos , Triptofano
2.
Environ Microbiol ; 22(7): 2680-2692, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32190965

RESUMO

Many Listeria species including L. monocytogenes contain the pathway for the biosynthesis of protocatechuate from shikimate and quinate. The qui1 and qui2 operons within these Listeria spp. encode enzymes for this pathway. The diversion of shikimate pathway intermediates in some Listeria species to produce protocatechuate suggests an important biological role for this compound to these organisms. A total of seven ORFs, including quiC2, were identified within qui1 and qui2, however only three proteins encoded by the operons have been functionally annotated. The final step in Listeria's protocatechuate biosynthesis involves the conversion of dehydroshikimate by a dehydroshikimate dehydratase (DSD). In this study, we demonstrate that QuiC2 functions as a DSD in Listeria spp. through biochemical and structural analyses. Moreover, we show that QuiC2 forms a phylogenetic cluster distinct from other functionally annotated DSDs. The individual phylogenetic clusters of DSD are represented by enzymes that produce protocatechuate for distinct biological processes. Similarly, QuiC2 is expected to produce protocatechuate for a novel biological process. We postulate that protocatechuate produced by DSDs found within the QuiC2 phylogenetic cluster provides an ecological niche for representative organisms.


Assuntos
Oxirredutases do Álcool/genética , Hidroxibenzoatos/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Óperon/genética , Filogenia , Ácido Quínico/metabolismo , Ácido Chiquímico/metabolismo
3.
Plant J ; 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890023

RESUMO

Quinate is produced and used by many plants in the biosynthesis of chlorogenic acids (CGAs). Chlorogenic acids are astringent and serve to deter herbivory. They also function as antifungal agents and have potent antioxidant properties. Quinate is produced at a branch point of shikimate biosynthesis by the enzyme quinate dehydrogenase (QDH). However, little information exists on the identity and biochemical properties of plant QDHs. In this study, we utilized structural and bioinformatics approaches to establish a QDH-specific primary sequence motif. Using this motif, we identified QDHs from diverse plants and confirmed their activity by recombinant protein production and kinetic assays. Through a detailed phylogenetic analysis, we show that plant QDHs arose directly from bifunctional dehydroquinate dehydratase-shikimate dehydrogenases (DHQD-SDHs) through different convergent evolutionary events, illustrated by our findings that eudicot and conifer QDHs arose early in vascular plant evolution whereas Brassicaceae QDHs emerged later. This process of recurrent evolution of QDH is further demonstrated by the fact that this family of proteins independently evolved NAD+ and NADP+ specificity in eudicots. The acquisition of QDH activity by these proteins was accompanied by the inactivation or functional evolution of the DHQD domain, as verified by enzyme activity assays and as reflected in the loss of key DHQD active site residues. The implications of QDH activity and evolution are discussed in terms of plant growth and development.

4.
Mol Microbiol ; 103(1): 39-54, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27706847

RESUMO

Quinate and shikimate can be degraded by a number of microbes. Dehydroshikimate dehydratases (DSDs) play a central role in this process, catalyzing the conversion of 3-dehydroshikimate to protocatechuate, a common intermediate of aromatic degradation pathways. DSDs have applications in metabolic engineering for the production of valuable protocatechuate-derived molecules. Although a number of Gram-negative bacteria are known to catabolize quinate and shikimate, only limited information exists on the quinate/shikimate catabolic enzymes found in these organisms. Here, we have functionally and structurally characterized a putative DSD designated QuiC1, which is present in some pseudomonads. The QuiC1 protein is not related by sequence with previously identified DSDs from the Gram-negative genus, Acinetobacter, but instead shows limited sequence identity in its N-terminal half with fungal DSDs. Analysis of a Pseudomonas aeruginosa quiC1 gene knock-out demonstrates that it is important for growth on either quinate or shikimate. The structure of a QuiC1 enzyme from P. putida reveals that the protein is a fusion of two distinct modules: an N-terminal sugar phosphate isomerase-like domain associated with DSD activity and a novel C-terminal hydroxyphenylpyruvate dioxygenase-like domain. The results of this study highlight the considerable diversity of enzymes that participate in quinate/shikimate catabolism in different microbes.


Assuntos
Oxirredutases do Álcool/metabolismo , Hidroliases/metabolismo , Oxirredutases do Álcool/química , Hidroliases/química , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Ácido Quínico/metabolismo , Ácido Chiquímico/análogos & derivados , Ácido Chiquímico/metabolismo , Relação Estrutura-Atividade
5.
Arch Biochem Biophys ; 566: 85-99, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25524738

RESUMO

Shikimate dehydrogenase (SDH) catalyzes the NADPH-dependent reduction of 3-deydroshikimate to shikimate, an essential reaction in the biosynthesis of the aromatic amino acids and a large number of other secondary metabolites in plants and microbes. The indispensible nature of this enzyme makes it a potential target for herbicides and antimicrobials. SDH is the archetypal member of a large protein family, which contains at least four additional functional classes with diverse metabolic roles. The different members of the SDH family share a highly similar three-dimensional structure and utilize a conserved catalytic mechanism, but exhibit distinct substrate preferences, making the family a particularly interesting system for studying modes of substrate recognition used by enzymes. Here, we review our current understanding of the biochemical and structural properties of each of the five previously identified SDH family functional classes.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Proteínas Fúngicas/química , NADP/química , Proteínas de Plantas/química , Ácido Chiquímico/análogos & derivados , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Biocatálise , Sequência Conservada , Proteínas Fúngicas/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Especificidade por Substrato
6.
Biochim Biophys Acta ; 1834(2): 516-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23142411

RESUMO

The shikimate dehydrogenase (SDH) family consists of enzymes with diverse roles in secondary metabolism. The two most widespread members of the family, AroE and YdiB, function in amino acid biosynthesis and quinate catabolism, respectively. Here, we have determined the crystal structure of an SDH homolog belonging to the RifI class, a group of enzymes with proposed roles in antibiotic biosynthesis. The structure of RifI2 from Pseudomonas putida exhibits a number of distinctive features, including a substantial C-terminal truncation and an atypical mode of oligomerization. The active site of the enzyme contains substrate- and cofactor-binding motifs that are significantly different from those of any previously characterized member of the SDH family. These features are reflected in the novel kinetic properties of the enzyme. RifI2 exhibits much lower activity using shikimate as a substrate than AroE, and a strong preference for NAD(+) instead of NADP(+) as a cofactor. Moreover, the enzyme has only trace activity using quinate, unlike YdiB. Cocrystallization of RifI2 with NAD(+) provided the opportunity to determine the mode of cofactor selectivity employed by the enzyme. We complemented this analysis by probing the role of a strictly conserved residue in the cofactor-binding domain, Asn193, by site directed mutagenesis. This study presents the first crystal structure and formal kinetic characterization of a new NAD(+)-dependent member of the SDH family.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Multimerização Proteica/fisiologia , Pseudomonas putida/enzimologia , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Cinética , Mutagênese Sítio-Dirigida , NAD/química , NAD/genética , NADP/química , NADP/genética , Pseudomonas putida/genética , Especificidade por Substrato/fisiologia
7.
Plant J ; 76(4): 615-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24004165

RESUMO

The Arabidopsis protein AtTTM3 belongs to the CYTH superfamily named after its two founding members, the CyaB adenylate cyclase from Aeromonas hydrophila and the mammalian thiamine triphosphatase. In this study we report the three-dimensional structure of a plant CYTH domain protein, AtTTM3, determined at 1.9 Å resolution. The crystal structure revealed the characteristic tunnel architecture of CYTH proteins, which specialize in the binding of nucleotides and other organic phosphates and in phosphoryl transfer reactions. The ß barrel is composed of eight antiparallel ß strands with a cluster of conserved inwardly facing acidic and basic amino acid residues. Mutagenesis of these residues in the catalytic core led to an almost complete loss of enzymatic activity. We established that AtTTM3 is not an adenylate cyclase. Instead, the enzyme displayed weak NTP phosphatase as well as strong tripolyphosphatase activities similar to the triphosphate tunnel metalloenzyme proteins from Clostridium thermocellum (CthTTM) and Nitrosomonas europaea (NeuTTM). AtTTM3 is most highly expressed in the proximal meristematic zone of the plant root. Furthermore, an AtTTM3 T-DNA insertion knockout line displayed a delay in root growth as well as reduced length and number of lateral roots, suggesting a role for AtTTM3 in root development.


Assuntos
Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Hidrolases Anidrido Ácido/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cristalografia por Raios X , Meristema/enzimologia , Meristema/genética , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Raízes de Plantas/genética , Conformação Proteica
8.
BMC Genomics ; 14: 162, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23496816

RESUMO

BACKGROUND: The ascomycete fungus Ophiostoma ulmi was responsible for the initial pandemic of the massively destructive Dutch elm disease in Europe and North America in early 1910. Dutch elm disease has ravaged the elm tree population globally and is a major threat to the remaining elm population. O. ulmi is also associated with valuable biomaterials applications. It was recently discovered that proteins from O. ulmi can be used for efficient transformation of amylose in the production of bioplastics. RESULTS: We have sequenced the 31.5 Mb genome of O.ulmi using Illumina next generation sequencing. Applying both de novo and comparative genome annotation methods, we predict a total of 8639 gene models. The quality of the predicted genes was validated using a variety of data sources consisting of EST data, mRNA-seq data and orthologs from related fungal species. Sequence-based computational methods were used to identify candidate virulence-related genes. Metabolic pathways were reconstructed and highlight specific enzymes that may play a role in virulence. CONCLUSIONS: This genome sequence will be a useful resource for further research aimed at understanding the molecular mechanisms of pathogenicity by O. ulmi. It will also facilitate the identification of enzymes necessary for industrial biotransformation applications.


Assuntos
Genoma Fúngico , Ophiostoma/genética , Etiquetas de Sequências Expressas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ophiostoma/classificação , Filogenia , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA , Virulência/genética
9.
Biochemistry ; 50(40): 8616-27, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21846128

RESUMO

Shikimate dehydrogenase (SDH) catalyzes the reversible NADPH-dependent reduction of 3-dehydroshikimate to shikimate. This reaction represents the fourth step of the shikimate pathway, the essential route for the biosynthesis of the aromatic amino acids in plants, fungi, bacteria, and apicomplexan parasites. The absence of this pathway in animals makes it an attractive target for herbicides and antimicrobials. At least four functionally distinct enzyme classes, AroE, YdiB, SDH-like (SdhL), and AroE-like1 (Ael1), utilize shikimate as a substrate in vitro and form the SDH family. Crystal structures have been determined for AroE, YdiB, and SdhL. In this study, we have determined the first representative crystal structure of an Ael1 enzyme. We demonstrate that Ael1 shares a similar overall structure with the other members of the SDH family. This high level of structural conservation extends to the active sites of the enzymes. In particular, an ionizable active site lysine and aspartate are present in all SDH homologues. Two distinct biochemical roles have been reported for this Lys-Asp pair: as binding residues in YdiB and as a catalytic dyad in AroE and SdhL. Here, we establish that the residues function as a catalytic dyad in Ael1 and, interestingly, in at least one YdiB homologue. The conservation of three-dimensional fold, active site architecture, and catalytic mechanism among members of the SDH family will facilitate the design of drugs targeting the shikimate pathway.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Família Multigênica , Pseudomonas putida/enzimologia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Sequência Conservada , Cinética , Dados de Sequência Molecular , Pseudomonas putida/química , Pseudomonas putida/metabolismo , Alinhamento de Sequência , Ácido Chiquímico/metabolismo
10.
PLoS Genet ; 4(12): e1000292, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19057671

RESUMO

Shikimate kinase (SK; EC 2.7.1.71) catalyzes the fifth reaction of the shikimate pathway, which directs carbon from the central metabolism pool to a broad range of secondary metabolites involved in plant development, growth, and stress responses. In this study, we demonstrate the role of plant SK gene duplicate evolution in the diversification of metabolic regulation and the acquisition of novel and physiologically essential function. Phylogenetic analysis of plant SK homologs resolves an orthologous cluster of plant SKs and two functionally distinct orthologous clusters. These previously undescribed genes, shikimate kinase-like 1 (SKL1) and -2 (SKL2), do not encode SK activity, are present in all major plant lineages, and apparently evolved under positive selection following SK gene duplication over 400 MYA. This is supported by functional assays using recombinant SK, SKL1, and SKL2 from Arabidopsis thaliana (At) and evolutionary analyses of the diversification of SK-catalytic and -substrate binding sites based on theoretical structure models. AtSKL1 mutants yield albino and novel variegated phenotypes, which indicate SKL1 is required for chloroplast biogenesis. Extant SKL2 sequences show a strong genetic signature of positive selection, which is enriched in a protein-protein interaction module not found in other SK homologs. We also report the first kinetic characterization of plant SKs and show that gene expression diversification among the AtSK inparalogs is correlated with developmental processes and stress responses. This study examines the functional diversification of ancient and recent plant SK gene duplicates and highlights the utility of SKs as scaffolds for functional innovation.


Assuntos
Evolução Molecular , Duplicação Gênica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Plantas/genética , Plantas/enzimologia , Sequência de Aminoácidos , Cloroplastos/química , Cloroplastos/enzimologia , Cloroplastos/genética , Dados de Sequência Molecular , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/classificação , Plantas/genética , Estrutura Terciária de Proteína , Seleção Genética
11.
FEBS J ; 287(11): 2235-2255, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31750992

RESUMO

Tyrosine biosynthesis via the shikimate pathway is absent in humans and other animals, making it an attractive target for next-generation antibiotics, which is increasingly important due to the looming proliferation of multidrug-resistant pathogens. Tyrosine biosynthesis is also of commercial importance for the environmentally friendly production of numerous compounds, such as pharmaceuticals, opioids, aromatic polymers, and petrochemical aromatics. Prephenate dehydrogenase (PDH) catalyzes the penultimate step of tyrosine biosynthesis in bacteria: the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate. The majority of PDHs are competitively inhibited by tyrosine and consist of a nucleotide-binding domain and a dimerization domain. Certain PDHs, including several from pathogens on the World Health Organization priority list of antibiotic-resistant bacteria, possess an additional ACT domain. However, biochemical and structural knowledge was lacking for these enzymes. In this study, we successfully established a recombinant protein expression system for PDH from Bacillus anthracis (BaPDH), the causative agent of anthrax, and determined the structure of a BaPDH ternary complex with NAD+ and tyrosine, a binary complex with tyrosine, and a structure of an isolated ACT domain dimer. We also conducted detailed kinetic and biophysical analyses of the enzyme. We show that BaPDH is allosterically regulated by tyrosine binding to the ACT domains, resulting in an asymmetric conformation of the BaDPH dimer that sterically prevents prephenate binding to either active site. The presented mode of allosteric inhibition is unique compared to both the competitive inhibition established for other PDHs and to the allosteric mechanisms for other ACT-containing enzymes. This study provides new structural and mechanistic insights that advance our understanding of tyrosine biosynthesis in bacteria. ENZYMES: Prephenate dehydrogenase from Bacillus anthracis (PDH): EC database ID: 1.3.1.12. DATABASES: Coordinates and structure factors have been deposited in the Protein Data Bank (PDB) with accession numbers PDB ID: 6U60 (BaPDH complex with NAD+ and tyrosine), PDB ID: 5UYY (BaPDH complex with tyrosine), and PDB ID: 5V0S (BaPDH isolated ACT domain dimer). The diffraction images are available at http://proteindiffraction.org with DOIs: https://doi.org/10.18430/M35USC, https://doi.org/10.18430/M35UYY, and https://doi.org/10.18430/M35V0S.


Assuntos
Bacillus anthracis/enzimologia , Prefenato Desidrogenase/genética , Tirosina/farmacologia , Bacillus anthracis/química , Bacillus anthracis/ultraestrutura , Catálise/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Ácidos Cicloexanocarboxílicos/química , Cicloexenos/química , Humanos , Prefenato Desidrogenase/ultraestrutura , Domínios Proteicos/efeitos dos fármacos , Tirosina/química
12.
Plant J ; 56(3): 457-69, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18643993

RESUMO

We used the chimeric Arabidopsis cyclic nucleotide-gated ion channel AtCNGC11/12 to conduct a structure-function study of plant cyclic nucleotide-gated ion channels (CNGCs). AtCNGC11/12 induces multiple pathogen resistance responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22). A genetic screen for mutants that suppress cpr22-conferred phenotypes identified an intragenic mutant, #73, which has a glutamate to lysine substitution (E519K) at the beginning of the eighth beta-sheet of the cyclic nucleotide-binding domain in AtCNGC11/12. The #73 mutant is morphologically identical to wild-type plants and has lost cpr22-related phenotypes including spontaneous cell death and enhanced pathogen resistance. Heterologous expression analysis using a K(+)-uptake-deficient yeast mutant revealed that this Glu519 is important for AtCNGC11/12 channel function, proving that the occurrence of cpr22 phenotypes requires active channel function of AtCNGC11/12. Additionally, Glu519 was also found to be important for the function of the wild-type channel AtCNGC12. Computational structural modeling and in vitro cAMP-binding assays suggest that Glu519 is a key residue for the structural stability of AtCNGCs and contributes to the interaction of the cyclic nucleotide-binding domain and the C-linker domain, rather than the binding of cAMP. Furthermore, a mutation in the alpha-subunit of the human cone receptor CNGA3 that causes total color blindness aligned well to the position of Glu519 in AtCNGC11/12. This suggests that AtCNGC11/12 suppressors could be a useful tool for discovering important residues not only for plant CNGCs but also for CNGCs in general.


Assuntos
Aminoácidos/química , Proteínas de Arabidopsis/química , Arabidopsis/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Sequência de Aminoácidos , Aminoácidos/genética , Arabidopsis/química , Proteínas de Arabidopsis/genética , Cruzamentos Genéticos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Genes de Plantas , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Mutação , Fenótipo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plasmídeos , Estrutura Secundária de Proteína , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Relação Estrutura-Atividade , Nicotiana/química , Nicotiana/genética
13.
Mol Biol Evol ; 25(10): 2221-32, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18669580

RESUMO

The shikimate dehydrogenases (SDH) represent a widely distributed enzyme family with an essential role in secondary metabolism. This superfamily had been previously subdivided into 4 enzyme groups (AroE, YdiB, SdhL, and RifI), which show clear biochemical and functional differences ranging from amino acid biosynthesis to antibiotic production. Despite the importance of this group, little is known about how such essential enzymatic functions can evolve and diversify. We dissected the enzyme superfamily with a phylogenomic analysis of approximately 250 fully sequenced genomes, making use of previously characterized representatives from each enzyme class, and the key substrate-binding residues known to distinguish substrate specificity. We identified 5 major evolutionary and functional SDH subgroups and several other potentially unique functional classes within this complex enzyme family and then validated the functional distinctiveness of each group by characterizing the 5 SDH homologs found in Pseudomonas putida KT2440 biochemically. We identified an entirely novel functionally distinct subgroup, which we designated Ael1 (AroE-like1) and also delineated a new group of shikimate/quinate dehydrogenases (YdiB2), which is phylogenetically distinct from the previously described Escherichia coli YdiB. The combination of biochemical, phylogenetic, and genomic approaches has revealed the broad extent to which the SDH enzyme superfamily has diversified. Five functional groups were validated with the potential for at least 5 additional subgroups. Our analysis also identified a new SDH functional group, which appears to have evolved recently from an ancestral AroE, illustrating a very prominent role of horizontal transmission and neofunctionalizaton in the evolutionary and functional diversification of this enzyme family.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Motivos de Aminoácidos , Antibacterianos/farmacologia , Sequência de Bases , Teorema de Bayes , Clonagem Molecular , Primers do DNA/química , Genes Bacterianos , Genoma , Genoma Bacteriano , Genômica/métodos , Cinética , Modelos Genéticos , Dados de Sequência Molecular , Filogenia
14.
J Mol Biol ; 430(9): 1265-1283, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29530613

RESUMO

Listeria monocytogenes is a common foodborne bacterial pathogen that contaminates plant and animal consumable products. The persistent nature of L. monocytogenes is associated with millions of dollars in food recalls annually. Here, we describe the role of shikimate in directly modulating the expression of genes encoding enzymes for the conversion of quinate and shikimate metabolites to protocatechuate. In L. monocytogenes, these genes are found within two operons, named qui1 and qui2. In addition, a gene named quiR, encoding a LysR-Type Transcriptional Regulator (QuiR), is located immediately upstream of the qui1 operon. Transcriptional lacZ-promoter fusion experiments show that QuiR induces gene expression of both qui1 and qui2 operons in the presence of shikimate. Furthermore, co-crystallization of the QuiR effector binding domain in complex with shikimate provides insights into the mechanism of activation of this regulator. Together these data show that upon shikimate accumulation, QuiR activates the transcription of genes encoding enzymes involved in shikimate and quinate utilization for the production of protocatechuate. Furthermore, the accumulation of protocatechuate leads to the inhibition of Listeria growth. Since protocatechuate is not known to be utilized by Listeria, its role is distinct from those established in other bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/genética , Ácido Chiquímico/farmacologia , Cristalografia por Raios X , Microbiologia de Alimentos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Hidroxibenzoatos/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/enzimologia , Óperon/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Ácido Quínico/farmacologia , Ativação Transcricional
15.
Protein Sci ; 15(6): 1417-32, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731976

RESUMO

A monofunctional prephenate dehydrogenase (PD) from Aquifex aeolicus was expressed as a His-tagged protein in Escherichia coli and was purified by nickel affinity chromatography allowing the first biochemical and biophysical characterization of a thermostable PD. A. aeolicus PD is susceptible to proteolysis. In this report, the properties of the full-length PD are compared with one of these products, an N-terminally truncated protein variant (Delta19PD) also expressed recombinantly in E. coli. Both forms are dimeric and show maximum activity at 95 degrees C or higher. Delta19PD is more sensitive to temperature effects yielding a half-life of 55 min at 95 degrees C versus 2 h for PD, and values of kcat and Km for prephenate, which are twice those determined for PD at 80 degrees C. Low concentrations of guanidine-HCl activate enzyme activity, but at higher concentrations activity is lost concomitant with a multi-state pathway of denaturation that proceeds through unfolding of the dimer, oligomerization, then unfolding of monomers. Measurements of steady-state fluorescence intensity and its quenching by acrylamide in the presence of Gdn-HCl suggest that, of the two tryptophan residues per monomer, one is buried in a hydrophobic pocket and does not become solvent exposed until the protein unfolds, while the less buried tryptophan is at the active site. Tyrosine is a feedback inhibitor of PD activity over a wide temperature range and enhances the cooperativity between subunits in the binding of prephenate. Properties of this thermostable PD are compared and contrasted with those of E. coli chorismate mutase-prephenate dehydrogenase and other mesophilic homologs.


Assuntos
Bactérias/enzimologia , Prefenato Desidrogenase/química , Prefenato Desidrogenase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Dimerização , Estabilidade Enzimática , Fluorescência , Guanidina/química , Cinética , Peso Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Prefenato Desidrogenase/genética , Prefenato Desidrogenase/isolamento & purificação , Desnaturação Proteica , Dobramento de Proteína , Subunidades Proteicas , Triptofano/química , Tirosina/metabolismo
16.
Structure ; 10(11): 1475-87, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12429089

RESUMO

The CbiT and CbiE enzymes participate in the biosynthesis of vitamin B12. They are fused together in some organisms to form a protein called CobL, which catalyzes two methylations and one decarboxylation on a precorrin intermediate. Because CbiE has sequence homology to canonical precorrin methyltransferases, CbiT was hypothesized to catalyze the decarboxylation. We herein present the crystal structure of MT0146, the CbiT homolog from Methanobacterium thermoautotrophicum. The protein shows structural similarity to Rossmann-like S-adenosyl-methionine-dependent methyltransferases, and our 1.9 A cocrystal structure shows that it binds S-adenosyl-methionine in standard geometry near a binding pocket that could accommodate a precorrin substrate. Therefore, MT0146/CbiT probably functions as a precorrin methyltransferase and represents the first enzyme identified with this activity that does not have the canonical precorrin methyltransferase fold.


Assuntos
Methanobacterium/metabolismo , Metiltransferases/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Dimerização , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos
17.
Protein Sci ; 14(12): 3121-8, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16260766

RESUMO

The S-adenosyl-L-methionine (SAM)-dependent methyltransferases represent a diverse and biologically important class of enzymes. These enzymes utilize the ubiquitous methyl donor SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. Here we present the crystal structure of PH1915 from Pyrococcus horikoshii OT3, a predicted SAM-dependent methyltransferase. This protein belongs to the Cluster of Orthologous Group 1092, and the presented crystal structure is the first representative structure of this protein family. Based on sequence and 3D structure analysis, we have made valuable functional insights that will facilitate further studies for characterizing this group of proteins. Specifically, we propose that PH1915 and its orthologs are rRNA- or tRNA-specific methyltransferases.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , Pyrococcus horikoshii/enzimologia , S-Adenosilmetionina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
18.
Protein Sci ; 11(6): 1409-14, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12021439

RESUMO

As part of our structural proteomics initiative, we have determined the crystal structure of MTH1491, a previously uncharacterized hypothetical protein from Methanobacterium thermoautotrophicum. MTH1491 is one of numerous structural genomics targets selected in a genome-wide survey of uncharacterized proteins. It belongs to a family of proteins whose biological function is not known. The crystal structure of MTH1491, the first structure for this family of proteins, consists of an overall five-stranded parallel beta-sheet with strand order 51234 and flanking helices. The oligomeric form of this molecule is a trimer as seen from both crystal contacts and gel filtration studies. Analysis revealed that the structure of MTH1491 is similar to that of dehydrogenases, amidohydrolases, and oxidoreductases. Using a combination of sequence and structural analyses, we showed that MTH1491 does not belong to either the dehydrogenase or the amidohydrolase superfamilies of proteins.


Assuntos
Proteínas de Bactérias/química , Methanobacterium/química , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Cristalografia por Raios X , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade , Sulfatos/química , Sulfatos/metabolismo
19.
Proteins ; 51(4): 562-8, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12784215

RESUMO

Protein crystallization is a major bottleneck in protein X-ray crystallography, the workhorse of most structural proteomics projects. Because the principles that govern protein crystallization are too poorly understood to allow them to be used in a strongly predictive sense, the most common crystallization strategy entails screening a wide variety of solution conditions to identify the small subset that will support crystal nucleation and growth. We tested the hypothesis that more efficient crystallization strategies could be formulated by extracting useful patterns and correlations from the large data sets of crystallization trials created in structural proteomics projects. A database of crystallization conditions was constructed for 755 different proteins purified and crystallized under uniform conditions. Forty-five percent of the proteins formed crystals. Data mining identified the conditions that crystallize the most proteins, revealed that many conditions are highly correlated in their behavior, and showed that the crystallization success rate is markedly dependent on the organism from which proteins derive. Of the proteins that crystallized in a 48-condition experiment, 60% could be crystallized in as few as 6 conditions and 94% in 24 conditions. Consideration of the full range of information coming from crystal screening trials allows one to design screens that are maximally productive while consuming minimal resources, and also suggests further useful conditions for extending existing screens.


Assuntos
Proteínas Arqueais/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Bases de Dados de Proteínas , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Methanobacterium/genética , Methanobacterium/metabolismo , Filogenia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
20.
J Biomol Screen ; 19(7): 1090-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24632659

RESUMO

Shikimate dehydrogenase (AroE) is an attractive target for herbicides and antimicrobial agents due to its conserved and essential nature in plants, fungi, and bacteria. Here, we have performed an in vitro screen using a collection of more than 5500 compounds and identified 24 novel inhibitors of AroE from Pseudomonas putida The IC50 values for the two most potent inhibitors we identified, epigallocatechin gallate (EGCG) and epicatechin gallate (ECG), were 3.0 ± 0.2 µM and 3.7 ± 0.5 µM, respectively. Based on the high level of structural conservation between AroE orthologs, we predicted that the identified compounds would also inhibit AroE enzymes from other organisms. Consistent with this hypothesis, we found that EGCG and ECG inhibit the AroE domain of the bifunctional dehydroquinate dehydratase-shikimate dehydrogenase (DHQ-SDH) from Arabidopsis thaliana with IC50 values of 2.1 ± 0.3 µM and 2.0 ± 0.2 µM, respectively.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Polifenóis/química , Arabidopsis/enzimologia , Proteínas de Bactérias/química , Sítios de Ligação , Catequina/análogos & derivados , Catequina/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Concentração Inibidora 50 , Cinética , Testes de Sensibilidade Microbiana , Domínios Proteicos , Pseudomonas putida/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA