Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R353-R367, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693166

RESUMO

Exposure to stress early in life has been associated with adult-onset comorbidities such as chronic pain, metabolic dysregulation, obesity, and inactivity. We have established an early-life stress model using neonatal maternal separation (NMS) in mice, which displays evidence of increased body weight and adiposity, widespread mechanical allodynia, and hypothalamic-pituitary-adrenal axis dysregulation in male mice. Early-life stress and consumption of a Western-style diet contribute to the development of obesity; however, relatively few preclinical studies have been performed in female rodents, which are known to be protected against diet-induced obesity and metabolic dysfunction. In this study, we gave naïve and NMS female mice access to a high-fat/high-sucrose (HFS) diet beginning at 4 wk of age. Robust increases in body weight and fat were observed in HFS-fed NMS mice during the first 10 wk on the diet, driven partly by increased food intake. Female NMS mice on an HFS diet showed widespread mechanical hypersensitivity compared with either naïve mice on an HFS diet or NMS mice on a control diet. HFS diet-fed NMS mice also had impaired glucose tolerance and fasting hyperinsulinemia. Strikingly, female NMS mice on an HFS diet showed evidence of hepatic steatosis with increased triglyceride levels and altered glucocorticoid receptor levels and phosphorylation state. They also exhibited increased energy expenditure as observed via indirect calorimetry and expression of proinflammatory markers in perigonadal adipose. Altogether, our data suggest that early-life stress exposure increased the susceptibility of female mice to develop diet-induced metabolic dysfunction and pain-like behaviors.


Assuntos
Dieta Hiperlipídica , Sacarose Alimentar , Estresse Psicológico , Animais , Feminino , Camundongos , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Sistema Hipotálamo-Hipofisário/metabolismo , Privação Materna , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Sacarose Alimentar/efeitos adversos
2.
Pediatr Res ; 94(6): 1942-1950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37479748

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in the U.S. and worldwide. The roles of early postnatal life stress (EPLS) and the fatty acid translocase (CD36) on the pathogenesis of adult-onset NAFLD remain unknown. We hypothesized that EPLS, in the form of neonatal maternal separation (NMS), would predispose mice towards developing adult NAFLD, increase hepatic CD36 expression, and differentially methylate Cd36 promoter concurrently. METHODS: NMS was performed on mice from postnatal day 1 to 21 and a high-fat/high-sucrose (HFS) diet was started at 4 weeks of age to generate four experimental groups: Naive-control diet (CD), Naive-HFS, NMS-CD, and NMS-HFS. RESULTS: NMS alone caused NAFLD in adult male mice at 25 weeks of age. The effects of NMS and HFS were generally additive in terms of NAFLD, hepatic Cd36 mRNA levels, and hepatic Cd36 promoter DNA hypomethylation. Cd36 promoter methylation negatively correlated with Cd36 mRNA levels. Two differentially methylated regions (DMRs) within Cd36 promoter regions appeared to be vulnerable to NMS in the mouse. CONCLUSIONS: Our findings suggest that NMS increases the risk of an individual, particularly male, towards NAFLD when faced with a HFS diet later in life. IMPACT: The key message of this article is that neonatal maternal separation and a postweaning high-fat/high-sucrose diet increased the risk of an individual, particularly male, towards NAFLD in adult life. What this study adds to the existing literature includes the identification of two vulnerable differentially methylated regions in hepatic Cd36 promoters whose methylation levels very strongly negatively correlated with Cd36 mRNA. The impact of this article is that it provides an early-life environment-responsive gene/promoter methylation model and an animal model for furthering the mechanistic study on how the insults in early-life environment are "transmitted" into adulthood and caused NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Hiperlipídica , Epigênese Genética , Fígado/metabolismo , Privação Materna , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , RNA Mensageiro/genética , Sacarose , Estresse Psicológico
3.
Neurourol Urodyn ; 37(5): 1623-1632, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29464752

RESUMO

AIMS: Patients with interstitial cystitis/painful bladder syndrome (IC/PBS) commonly suffer from widespread pain and mood disorder, which has been attributed to improper functioning of the hypothalamic-pituitary-adrenal (HPA) axis. Voluntary exercise has been shown to improve HPA axis function, therefore we are determining whether voluntary wheel running can attenuate urological pain and dysfunction following neonatal maternal separation (NMS) in female mice. METHODS: Mice underwent NMS for 3 h/day from postnatal Day 1-21, were caged with free access to running wheels at 4 weeks of age, and assessed 4 weeks later for bladder sensitivity, micturition, reward behavior, mast cell degranulation, and HPA axis-related in vitro analysis. RESULTS: Increased bladder sensitivity, void frequency, and mast cell degranulation was observed in adult sedentary (-Sed) NMS mice, compared to naïve-Sed controls. Sucrose preference was increased in NMS-Sed mice and corticotropin-releasing factor receptor 1 (CRF1 ) and glucocorticoid receptor mRNA levels were significantly reduced in the hippocampus. Exercise normalized bladder sensitivity, micturition output, and increased brain-derived neurotrophic factor (BDNF) mRNA levels in the hippocampus of NMS mice. Mast cell degranulation was also normalized in NMS bladders following exercise. CONCLUSIONS: Voluntary exercise normalized behavioral outcomes resulting from NMS in female mice, increased hippocampal BDNF mRNA levels, and decreased mast cell degranulation in the bladder. Together these results provide novel insight into the efficacy of voluntary exercise to attenuate comorbid outcomes resulting from exposure to early life stress.


Assuntos
Privação Materna , Atividade Motora/fisiologia , Estresse Psicológico/fisiopatologia , Bexiga Urinária/fisiopatologia , Micção/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/fisiopatologia , Corrida , Estresse Psicológico/metabolismo
4.
Int J Mol Sci ; 19(1)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29286317

RESUMO

Rett Syndrome (RTT), an autism-related disorder caused by mutation of the X-linked Methyl CpG-binding Protein 2 (MECP2) gene, is characterized by severe cognitive and intellectual deficits. While cognitive deficits are well-documented in humans and rodent models, impairments of sensory, motor and metabolic functions also occur but remain poorly understood. To better understand non-cognitive deficits in RTT, we studied female rats heterozygous for Mecp2 mutation (Mecp2-/x); unlike commonly used male Mecp2-/y rodent models, this more closely approximates human RTT where males rarely survive. Mecp2-/x rats showed rapid, progressive decline of motor coordination through six months of age as assessed by rotarod performance, accompanied by deficits in gait and posture. Mecp2-/x rats were hyper-responsive to noxious pressure and cold, but showed visceral hyposensitivity when tested by colorectal distension. Mecp2-/x rats ate less, drank more, and had more body fat resulting in increased weight gain. Our findings reveal an array of progressive non-cognitive deficits in this rat model that are likely to contribute to the compromised quality of life that characterizes RTT.


Assuntos
Ataxia/genética , Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Transtornos Psicomotores/genética , Síndrome de Rett/genética , Animais , Ataxia/metabolismo , Ataxia/fisiopatologia , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Marcha , Heterozigoto , Humanos , Proteína 2 de Ligação a Metil-CpG/deficiência , Postura , Transtornos Psicomotores/metabolismo , Transtornos Psicomotores/fisiopatologia , Ratos , Ratos Transgênicos , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatologia , Teste de Desempenho do Rota-Rod
5.
Obesity (Silver Spring) ; 32(1): 131-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38131100

RESUMO

OBJECTIVE: The impact of early-life stress on weight-loss maintenance is unknown. METHODS: Mice underwent neonatal maternal separation (NMS) from 0 to 3 weeks and were weaned onto a high-fat sucrose diet (HFSD) from 3 to 20 weeks. Calorie-restricted weight loss on a low-fat sucrose diet (LFSD) occurred over 2 weeks to induce a 20% loss in body weight, which was maintained for 6 weeks. After weight loss, half of the mice received running wheels, and the other half remained sedentary. Mice were then fed ad libitum on an HFSD or LFSD for 10 weeks and were allowed to regain body weight. RESULTS: NMS mice had greater weight regain, total body weight, and adiposity compared with naïve mice. During the first week of refeeding, NMS mice had increased food intake and were in a greater positive energy balance than naïve mice. Female mice were more susceptible to NMS-induced effects, including increases in adiposity. NMS and naïve females were more susceptible to HFSD-induced weight regain. Exercise was beneficial in the first week of regain in male mice, but, long-term, only those on the LFSD benefited from exercise. As expected, HFSD led to greater weight regain than LFSD. CONCLUSIONS: Early-life stress increases weight regain in mice.


Assuntos
Experiências Adversas da Infância , Camundongos , Masculino , Feminino , Animais , Privação Materna , Obesidade/etiologia , Redução de Peso , Aumento de Peso , Sacarose
6.
J Pain ; : 104572, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768798

RESUMO

Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of arginine-vasopressin receptor 1A (Avpr1a) as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing 2 C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan instillation, a validated preclinical model for postinflammatory IBS. Using whole-genome sequencing, we identified a single-nucleotide polymorphism differentiating the 2 strains in the 5' intergenic region upstream of Avpr1a, encoding the protein Avpr1a. We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the 2 BL/6 substrains did not differ across other gastrointestinal phenotypes (eg, fecal water retention), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. These results parallel findings that patients' colonic Avpr1a mRNA expression corresponded to higher pain ratings. Moreover, neurons of the enteric nervous system were hyperresponsive to the Avpr1a agonist arginine-vasopressin, suggesting a role for enteric neurons in the pathology underlying VH. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH susceptibility as well as a potential therapeutic target specific to VH. PERSPECTIVE: This article presents evidence of Avpr1a as a novel candidate gene for VH in a mouse model of IBS. Avpr1a genotype and/or tissue-specific expression represents a potential biomarker for chronic abdominal pain susceptibility.

7.
bioRxiv ; 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503190

RESUMO

Early life stress increases obesity risk, but its impact on weight loss maintenance is unknown. Mice underwent neonatal maternal separation (NMS) from 0-3 weeks and were weaned onto high fat sucrose diet (HFSD) from 3-20 weeks. Calorie-restricted weight loss on a low fat sucrose diet (LFSD) occurred over 2 weeks to induce a 20% loss in body weight, which was maintained for 6 weeks. After weight loss, half the mice received running wheels (EX) the other half remained sedentary (SED). Mice were then fed ad libitum on HFSD or LFSD for 10 weeks and allowed to regain body weight. NMS mice had greater weight regain, total body weight and adiposity compared to naïve mice. During the first week of refeeding, NMS mice had increased food intake and were in a greater positive energy balance than naïve mice, but total energy expenditure was not affected by NMS. Female mice were more susceptible to NMS-induced effects, including increases in adiposity. NMS and naïve females were more susceptible to HFSD-induce weight regain. Exercise was beneficial in the first week of regain in male mice, but long-term only those on LFSD benefited from EX. As expected, HFSD led to greater weight regain than LFSD.

8.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187732

RESUMO

Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of Avpr1a as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing two C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan (ZYM) instillation, a validated preclinical model for post-inflammatory IBS. Using whole genome sequencing, we identified a SNP differentiating the two strains in the 5' intergenic region upstream of Avpr1a, encoding the protein arginine-vasopressin receptor 1A (AVPR1A). We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression differences and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the two BL/6 substrains did not differ across other gastrointestinal (GI) phenotypes (e.g., GI motility), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. Moreover, neurons of the enteric nervous system were hyperresponsive to the AVPR1A agonist AVP, suggesting a role for enteric neurons in the pathology underlying VH. These results parallel our findings that patients' colonic Avpr1a mRNA expression was higher in patients with higher pain ratings. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH-susceptibility as well as a potential therapeutic target specific to VH.

9.
J Neurosci ; 31(29): 10516-28, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21775597

RESUMO

The nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) families of growth factors regulate the sensitivity of sensory neurons. The ion channels transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential channel, subfamily A, member 1 (TRPA1), are necessary for development of inflammatory hypersensitivity and are functionally potentiated by growth factors. We have shown previously that inflamed skin exhibits rapid increases in artemin mRNA with slower, smaller increases in NGF mRNA. Here, using mice, we show that, in inflamed colon, mRNA for both growth factors increased with a pattern distinct from that seen in skin. Differences were also seen in the pattern of TRPV1 and TRPA1 mRNA expression in DRG innervating inflamed skin and colon. Growth factors potentiated capsaicin (a specific TRPV1 agonist) and mustard oil (a specific TRPA1 agonist) behavioral responses in vivo, raising the question as to how these growth factors affect individual afferents. Because individual tissues are innervated by afferents with unique properties, we investigated modulation of TRPV1 and TRPA1 in identified afferents projecting to muscle, skin, and colon. Muscle and colon afferents are twice as likely as skin afferents to express functional TRPV1 and TRPA1. TRPV1 and TRPA1 responses were potentiated by growth factors in all afferent types, but compared with skin afferents, muscle afferents were twice as likely to exhibit NGF-induced potentiation and one-half as likely to exhibit artemin-induced potentiation of TRPV1. Furthermore, skin afferents showed no GDNF-induced potentiation of TRPA1, but 43% of muscle and 38% of colon afferents exhibited GDNF-induced potentiation. These results show that interpretation of afferent homeostatic mechanisms must incorporate properties that are specific to the target tissue.


Assuntos
Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Canais de Cátion TRPV/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Cálcio/metabolismo , Toxina da Cólera/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dermatite/etiologia , Dermatite/metabolismo , Modelos Animais de Doenças , Corantes Fluorescentes/metabolismo , Adjuvante de Freund/efeitos adversos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Vias Neurais/fisiologia , Peroxidase/metabolismo , RNA Mensageiro/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Pele/metabolismo , Canal de Cátion TRPA1 , Fatores de Tempo , Aglutininas do Germe de Trigo/metabolismo
10.
Gastroenterology ; 140(4): 1283-1291.e1-2, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21185837

RESUMO

BACKGROUND & AIMS: The transient receptor potential (TRP) channels TRPV1 and TRPA1 have each been associated with regulation of efferent properties of primary afferent neurons that initiate neurogenic inflammation and are required for the development of inflammatory hyperalgesia. To evaluate the role of these channels in producing pain during pancreatic inflammation, we studied pancreatic nodose ganglion (NG) and dorsal root ganglion (DRG) sensory neurons (identified by content of retrograde tracer) and behavioral outcomes in a mouse model of acute pancreatitis. METHODS: Pancreatic inflammation was induced by 8 hourly injections of cerulein (50 µg/kg). The extent of inflammation, pancreatic neuron TRP channel expression and function and excitability, and pain-related behaviors were evaluated over the course of the following week. RESULTS: Histology and myeloperoxidase activity confirmed pancreatic inflammation that was associated with increased excitability and messenger RNA expression of the TRP channels in NG and DRG pancreatic neurons. Calcium imaging of pancreatic NG and DRG neurons from mice given cerulein revealed increased responses to TRP agonists. TRPV1 and TRPA1 antagonists attenuated cerulein-induced pain behaviors and pancreatic inflammation; they had a synergistic effect. CONCLUSIONS: Pancreatic inflammation significantly increased the expression and functional properties of TRPV1 and TRPA1, as well as the excitability of pancreatic sensory neurons in vagal and spinal pathways. TRP channel antagonists acted synergistically to reverse pancreatic inflammation and associated pain behaviors; reagents that target interactions between these channels might be developed to reduce pain in patients with acute pancreatitis.


Assuntos
Dor Abdominal , Acetanilidas/farmacologia , Acrilamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Pancreatite , Purinas/farmacologia , Canais de Cátion TRPV/imunologia , Canais de Potencial de Receptor Transitório/imunologia , Dor Abdominal/tratamento farmacológico , Dor Abdominal/etiologia , Dor Abdominal/imunologia , Doença Aguda , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/citologia , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Expressão Gênica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Nodoso/citologia , Gânglio Nodoso/imunologia , Gânglio Nodoso/metabolismo , Pâncreas/imunologia , Pâncreas/inervação , Pancreatite/complicações , Pancreatite/tratamento farmacológico , Pancreatite/imunologia , Técnicas de Patch-Clamp , Canal de Cátion TRPA1 , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética
11.
Front Pain Res (Lausanne) ; 3: 809944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295799

RESUMO

Early life stress exposure significantly increases the risk of developing chronic pain syndromes and comorbid mood and metabolic disorders later in life. Structural and functional changes within the hippocampus have been shown to contribute to many early life stress-related outcomes. We have previously reported that adult mice that underwent neonatal maternal separation (NMS) exhibit urogenital hypersensitivity, altered anxiety- and depression-like behaviors, increased adiposity, and decreased gene expression and neurogenesis in the hippocampus. Here, we are using magnetic resonance imaging and spectroscopy (MRI and MRS) to further investigate both NMS- and acute stress-induced changes in the hippocampus of female mice. Volumetric analysis of the whole brain revealed that the left hippocampus of NMS mice was 0.038 mm3 smaller compared to naïve mice. MRS was performed only on the right hippocampus and both total choline (tCho) and total N-acetylaspartate (tNAA) levels were significantly decreased due to NMS, particularly after WAS. Phosphoethanolamine (PE) levels were decreased in naïve mice after WAS, but not in NMS mice, and WAS increased ascorbate levels in both groups. The NMS mice showed a trend toward increased body weight and body fat percentage compared to naïve mice. A significant negative correlation was observed between body weight and phosphocreatine levels post-WAS in NMS mice, as well as a positive correlation between body weight and glutamine for NMS mice and a negative correlation for naïve mice. Together, these data suggest that NMS in mice reduces left hippocampal volume and may result in mitochondrial dysfunction and reduced neuronal integrity of the right hippocampus in adulthood. Hippocampal changes also appear to be related to whole body metabolic outcomes.

12.
Burns ; 47(8): 1896-1907, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33958242

RESUMO

Acute pain is prevalent following burn injury and can often transition to chronic pain. Prolonged acute pain is an important risk factor for chronic pain and there is little preclinical research to address this problem. Using a mouse model of second-degree burn, we investigated whether pre-existing stress influences pain(sensitivity) after a burn injury. We introduced a contribution of stress in two different ways: (1) the use of foot-shock as a pre-injury stressor or (2) the use of A/J mice to represent higher pre-existing stress compared to C57Bl/6 mice. C57Bl/6 and A/J mice were exposed to repeated mild foot shock to induce stress for 10 continuous days and mice underwent either burn injury or sham burn injury of the plantar surface of the right hind paw. Assessments of mechanical and thermal sensitivities of the injured and uninjured paw were conducted during the shock protocol and at intervals up to 82-day post-burn injury. In both strains of mice that underwent burn injury, thermal hypersensitivity and mechanical allodynia appeared rapidly in the ipsilateral paw. Mice that were stressed took much longer to recover their hind paw mechanical thresholds to baseline compared to non-stressed mice in both burn and non-burn groups. Analysis of the two mouse strains revealed that the recovery of mechanical thresholds in A/J mice which display higher levels of baseline anxiety was shorter than C57Bl/6 mice. No differences were observed regarding thermal sensitivities between strains. Our results support the view that stress exposure prior to burn injury affects mechanical and thermal thresholds and may be relevant to as a risk factor for the transition from acute to chronic pain. Finally, genetic differences may play a key role in modality-specific recovery following burn injury.


Assuntos
Queimaduras , Animais , Queimaduras/complicações , Modelos Animais de Doenças , Hiperalgesia/genética , Camundongos , Camundongos Endogâmicos C57BL , Dor/etiologia
13.
Pain ; 162(6): 1681-1691, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399417

RESUMO

ABSTRACT: Patients with a history of early life stress (ELS) exposure have an increased risk of developing chronic pain and mood disorders later in life. The severity of ELS in patients with urologic chronic pelvic pain syndrome (UCPPS) is directly correlated with symptom severity and increased comorbidity, and is inversely related to likelihood of improvement. Voluntary exercise improves chronic pain symptoms, and our group and others have shown that voluntary wheel running can improve outcomes in stress-induced UCPPS models, suggesting that exercise may negate some of the outcomes associated with ELS. Here, we provide further evidence that voluntary wheel running can attenuate increased perigenital mechanical sensitivity, bladder output, and mast cell degranulation in the bladder and prostate in male mice that underwent neonatal maternal separation (NMS). Sedentary male NMS mice had reduced serum corticosterone, which was not impacted by voluntary wheel running, although stress-related regulatory gene expression in the hypothalamus and hippocampus was significantly increased after exercise. Neurogenesis in the dentate gyrus of the hippocampus was diminished in sedentary NMS mice and significantly increased in both exercised naïve and NMS mice. Sucrose consumption increased in exercised naïve but not NMS mice, and anxiety behaviors measured on an elevated plus maze were increased after exercise. Together these data suggest that voluntary wheel running is sufficient to normalize many of the UCPPS-related outcomes resulting from NMS. Exercise also increased hippocampal neurogenesis and stress-related gene expression within the hypothalamic-pituitary-adrenal axis, further supporting exercise as a nonpharmacological intervention for attenuating outcomes related to ELS exposure.


Assuntos
Experiências Adversas da Infância , Dor Crônica , Condicionamento Físico Animal , Animais , Humanos , Sistema Hipotálamo-Hipofisário , Masculino , Privação Materna , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Dor Pélvica/etiologia , Dor Pélvica/terapia , Sistema Hipófise-Suprarrenal , Estresse Psicológico/terapia
14.
Front Physiol ; 12: 665732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122137

RESUMO

Migraine is a complex neurological disorder that affects three times more women than men and can be triggered by endogenous and exogenous factors. Stress is a common migraine trigger and exposure to early life stress increases the likelihood of developing chronic pain disorders later in life. Here, we used our neonatal maternal separation (NMS) model of early life stress to investigate whether female NMS mice have an increased susceptibility to evoked migraine-like behaviors and the potential therapeutic effect of voluntary wheel running. NMS was performed for 3 h/day during the first 3 weeks of life and initial observations were made at 12 weeks of age after voluntary wheel running (Exercise, -Ex) or sedentary behavior (-Sed) for 4 weeks. Mast cell degranulation rates were significantly higher in dura mater from NMS-Sed mice, compared to either naïve-Sed or NMS-Ex mice. Protease activated receptor 2 (PAR2) protein levels in the dura were significantly increased in NMS mice and a significant interaction of NMS and exercise was observed for transient receptor potential ankyrin 1 (TRPA1) protein levels in the dura. Behavioral assessments were performed on adult (>8 weeks of age) naïve and NMS mice that received free access to a running wheel beginning at 4 weeks of age. Facial grimace, paw mechanical withdrawal threshold, and light aversion were measured following direct application of inflammatory soup (IS) onto the dura or intraperitoneal (IP) nitroglycerin (NTG) injection. Dural IS resulted in a significant decrease in forepaw withdrawal threshold in all groups of mice, while exercise significantly increased grimace score across all groups. NTG significantly increased grimace score, particularly in exercised mice. A significant effect of NMS and a significant interaction effect of exercise and NMS were observed on hindpaw sensitivity following NTG injection. Significant light aversion was observed in NMS mice, regardless of exercise, following NTG. Finally, exercise significantly reduced calcitonin gene-related peptide (CGRP) protein level in the dura of NMS and naïve mice. Taken together, these findings suggest that while voluntary wheel running improved some measures in NMS mice that have been associated with increased migraine susceptibility, behavioral outcomes were not impacted or even worsened by exercise.

15.
Neuroscience ; 468: 53-67, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34107347

RESUMO

Inflammation plays a key role in the progression and maintenance of chronic pain, which impacts the lives of millions of Americans. Despite growing evidence that chronic pain can be improved by treating underlying inflammation, successful treatments are lacking and pharmaceutical interventions are limited due to drug side effects. Here we are testing whether a 'healthy human' diet (HHD), with or without anti-inflammatory components (HHAID), improves pain-like behaviors in a preclinical model of chronic widespread hypersensitivity induced by neonatal maternal separation (NMS). The HHD and HHAID are isocaloric and macronutrient-matched, have a low glycemic index, and fat content (35 kcal%) that is high in omega-3 fatty acids, while only the HHAID includes a combination of key anti-inflammatory compounds, at clinically relevant doses. Mice on these diets were compared to mice on a control diet with a macronutrient composition commonly used in rodents (20% protein, 70% carbohydrate, 10% fat). Our results demonstrate a benefit of the HHAID on pain-like behaviors in both male and female mice, despite increased caloric intake, adiposity, and weight gain. In female mice, HHAID specifically increased measures of metabolic syndrome and inflammation compared to the HHD and control diet groups. Male mice were susceptible to worsening metabolic measures on both the HHAID and HHD. This work highlights important sexual dimorphic outcomes related to early life stress exposure and dietary interventions, as well as a potential disconnect between improvements in pain-like behaviors and metabolic measures.


Assuntos
Ácidos Graxos Ômega-3 , Hiperalgesia , Animais , Anti-Inflamatórios , Dieta , Dieta Hiperlipídica/efeitos adversos , Feminino , Hiperalgesia/tratamento farmacológico , Masculino , Privação Materna , Camundongos
16.
Nutrients ; 13(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34444756

RESUMO

The central integration of peripheral neural signals is one mechanism by which systemic energy homeostasis is regulated. Previously, increased acute food intake following the chemical reduction of hepatic fatty acid oxidation and ATP levels was prevented by common hepatic branch vagotomy (HBV). However, possible offsite actions of the chemical compounds confound the precise role of liver energy metabolism. Herein, we used a hepatocyte PGC1a heterozygous (LPGC1a) mouse model, with associated reductions in mitochondrial fatty acid oxidation and respiratory capacity, to assess the role of liver energy metabolism in systemic energy homeostasis. LPGC1a male, but not female, mice had a 70% greater high-fat/high-sucrose (HFHS) diet-induced weight gain compared to wildtype (WT) mice (p < 0.05). The greater weight gain was associated with altered feeding behavior and lower activity energy expenditure during the HFHS diet in LPGC1a males. WT and LPGC1a mice underwent sham surgery or HBV to assess whether vagal signaling was involved in the HFHS-induced weight gain of male LPGC1a mice. HBV increased HFHS-induced weight gain (85%, p < 0.05) in male WT mice, but not LPGC1a mice. These data demonstrate a sex-specific role of reduced liver energy metabolism in acute diet-induced weight gain, and the need for a more nuanced assessment of the role of vagal signaling in short-term diet-induced weight gain.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Modelos Animais de Doenças , Ingestão de Alimentos , Metabolismo Energético , Ácidos Graxos/metabolismo , Feminino , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sacarose/metabolismo , Nervo Vago/metabolismo , Aumento de Peso
17.
J Neurosci ; 29(3): 743-52, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19158300

RESUMO

Changes in primary sensory neurons are likely to contribute to the emergence of chronic visceral pain. An important step in understanding visceral pain is the development of comprehensive phenotypes that combines functional and anatomical properties for these neurons. We developed a novel ex vivo physiology preparation in mice that allows intracellular recording from colon sensory neurons during colon distension, in the presence and absence of pharmacologic agents. This preparation also allows recovery of functionally characterized afferents for histochemical analysis. Recordings obtained from L6 dorsal root ganglion cells in C57BL/6 mice identified two distinct populations of distension-responsive colon afferents: high-firing frequency (HF) and low-firing frequency (LF) cells. Fluid distension of the colon elicited rapid firing (>20 Hz) in HF cells, whereas LF cells seldom fired >5 Hz. Distension response thresholds were significantly lower in HF cells (LF, 17.5 +/- 1.1 cmH(2)O; HF, 2.6 +/- 1.0 cmH(2)O). Responses of most LF afferents to colon distension were sensitized by luminal application of capsaicin (1 microm; 8 of 9 LF cells), mustard oil (100 microm; 10 of 12 LF cells), and low pH (pH 4.0; 5 of 6 LF cells). In contrast, few HF afferents were sensitized by capsaicin (3 of 9), mustard oil (2 of 7), or low pH (1 of 6) application. Few HF afferents (4 of 23) expressed the capsaicin receptor, TRPV1. In contrast, 87% (25 of 29) of LF afferents expressed TRPV1. TRPV1 has been shown to be required for development of inflammatory hyperalgesia. These results suggest a unique functional role of TRPV1-positive colon afferents that could be exploited to design specific therapies for visceral hypersensitivity.


Assuntos
Potenciais de Ação/fisiologia , Colo/citologia , Pelve , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPV/metabolismo , Fibras Aferentes Viscerais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Biofísica , Capsaicina/farmacologia , Colo/inervação , Feminino , Gânglios Espinais/citologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mostardeira , Limiar da Dor/efeitos dos fármacos , Estimulação Física/métodos , Óleos de Plantas/farmacologia , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/efeitos dos fármacos , Fármacos do Sistema Sensorial , Estatísticas não Paramétricas
18.
Brain Res Rev ; 60(1): 171-86, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19150371

RESUMO

Visceral pain is the most common reason for doctor visits in the US. Like somatic pain, virtually all visceral pain sensations begin with the activation of primary sensory neurons innervating the viscera and/or the blood vessels associated with these structures. Visceral afferents also play a central role in tissue homeostasis. Recent studies show that in addition to monitoring the state of the viscera, they perform efferent functions through the release of small molecules (e.g. peptides like CGRP) that can drive inflammation, thereby contributing to the development of visceral pathologies (e.g. diabetes Razavi, R., Chan, Y., Afifiyan, F.N., Liu, X.J., Wan, X., Yantha, J., Tsui, H., Tang, L., Tsai, S., Santamaria, P., Driver, J.P., Serreze, D., Salter, M.W., Dosch, H.M., 2006. TRPV1+ sensory neurons control beta cell stress and islet inflammation in autoimmune diabetes, Cell 127 1123-1135). Visceral afferents are heterogeneous with respect to their anatomy, neurochemistry and function. They are also highly plastic in that their cellular environment continuously influences their response properties. This plasticity makes them susceptible to long-term changes that may contribute significantly to the development of persistent pain states such as those associated with irritable bowel syndrome, pancreatitis, and visceral cancers. This review examines recent insights into visceral afferent anatomy and neurochemistry and how neonatal insults can affect the function of these neurons in the adult. New approaches to the treatment of visceral pain, which focus on primary afferents, will also be discussed.


Assuntos
Nociceptores/metabolismo , Dor/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Vísceras/inervação , Fibras Aferentes Viscerais/fisiopatologia , Animais , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Plasticidade Neuronal/fisiologia , Neuropeptídeos/metabolismo , Dor/etiologia , Canais de Cátion TRPV/metabolismo , Vísceras/fisiopatologia , Fibras Aferentes Viscerais/crescimento & desenvolvimento
19.
Physiol Behav ; 223: 113000, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512033

RESUMO

The development of obesity-related metabolic syndrome (MetS) involves a complex interaction of genetic and environmental factors. One environmental factor found to be significantly associated with MetS is early life stress (ELS). We have previously reported on our mouse model of ELS, induced by neonatal maternal separation (NMS), that displays altered regulation of the hypothalamic-pituitary-adrenal (HPA) axis and increased sensitivity in the urogenital organs, which was attenuated by voluntary wheel running. Here, we are using our NMS model to determine if ELS-induced changes in the HPA axis also influence weight gain and MetS. Naïve (non-stressed) and NMS male mice were given free access to a running wheel and a low-fat control diet at 4-weeks of age. At 16-weeks of age, half of the mice were transitioned to a high fat/sucrose (HFS) diet to investigate if NMS influences the effectiveness of voluntary exercise to prevent diet-induced obesity and MetS. Overall, we observed a greater impact of voluntary exercise on prevention of HFS diet-induced outcomes in naïve mice, compared to NMS mice. Although body weight and fat mass were still significantly higher, exercise attenuated fasting insulin levels and mRNA levels of inflammatory markers in epididymal adipose tissue in HFS diet-fed naïve mice. Only moderate changes were observed in exercised NMS mice on a HFS diet, although this could partially be explained by reduced running distance within this group. Interestingly, sedentary NMS mice on a control diet displayed impaired glucose homeostasis and moderately increased pro-inflammatory mRNA levels in epididymal adipose, suggesting that early life stress alone impairs metabolic function and negatively impacts the therapeutic effect of voluntary exercise.


Assuntos
Obesidade , Condicionamento Físico Animal , Estresse Psicológico , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Sistema Hipotálamo-Hipofisário , Privação Materna , Camundongos Endogâmicos C57BL , Atividade Motora , Obesidade/etiologia , Obesidade/prevenção & controle , Sistema Hipófise-Suprarrenal
20.
Pain ; 161(1): 211-219, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568043

RESUMO

A significant subset of patients with urologic chronic pelvic pain syndrome suffer from widespread, as well as pelvic, pain and experience mood-related disorders, including anxiety, depression, and panic disorder. Stress is a commonly reported trigger for symptom onset and exacerbation within these patients. The link between stress and pain is believed to arise, in part, from the hypothalamic-pituitary-adrenal axis, which regulates the response to stress and can influence the perception of pain. Previous studies have shown that stress exposure in anxiety-prone rats can induce both pelvic and widespread hypersensitivity. Here, we exposed female A/J mice, an anxiety-prone inbred murine strain, to 10 days of foot shock stress to determine stress-induced effects on sensitivity, anhedonia, and hypothalamic-pituitary-adrenal axis regulation and output. At 1 and 28 days after foot shock, A/J mice displayed significantly increased bladder sensitivity and hind paw mechanical allodynia. They also displayed anhedonic behavior, measured as reduced nest building scores and a decrease in sucrose preference during the 10-day foot shock exposure. Serum corticosterone was significantly increased at 1 day after foot shock, and bladder mast cell degranulation rates were similarly high in both sham- and shock-exposed mice. Bladder cytokine and growth factor mRNA levels indicated a persistent shift toward a proinflammatory environment after foot shock exposure. Together, these data suggest that chronic stress exposure in an anxiety-prone mouse strain may provide a useful translational model for understanding mechanisms that contribute to widespreadness of pain and increased comorbidity in a subset of patients with urologic chronic pelvic pain syndrome.


Assuntos
Anedonia/fisiologia , Comportamento Animal/fisiologia , Hiperalgesia/fisiopatologia , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Citocinas/genética , Citocinas/metabolismo , Eletrochoque , Feminino , Hiperalgesia/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Sistema Hipófise-Suprarrenal/fisiopatologia , Estresse Psicológico/metabolismo , Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA