RESUMO
High-grade serous ovarian cancers have low survival rates because of their late presentation with extensive peritoneal metastases and frequent chemoresistance1, and require new treatments guided by novel insights into pathogenesis. Here we describe the intrinsic tumour-suppressive activities of interferon-ε (IFNε). IFNε is constitutively expressed in epithelial cells of the fallopian tube, the cell of origin of high-grade serous ovarian cancers, and is then lost during development of these tumours. We characterize its anti-tumour activity in several preclinical models: ovarian cancer patient-derived xenografts, orthotopic and disseminated syngeneic models, and tumour cell lines with or without mutations in Trp53 and Brca genes. We use manipulation of the IFNε receptor IFNAR1 in different cell compartments, differential exposure status to IFNε and global measures of IFN signalling to show that the mechanism of the anti-tumour activity of IFNε involves direct action on tumour cells and, crucially, activation of anti-tumour immunity. IFNε activated anti-tumour T and natural killer cells and prevented the accumulation and activation of myeloid-derived suppressor cells and regulatory T cells. Thus, we demonstrate that IFNε is an intrinsic tumour suppressor in the female reproductive tract whose activities in models of established and advanced ovarian cancer, distinct from other type I IFNs, are compelling indications of potential new therapeutic approaches for ovarian cancer.
Assuntos
Interferon Tipo I , Neoplasias Ovarianas , Proteínas Supressoras de Tumor , Animais , Feminino , Humanos , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Tubas Uterinas/metabolismo , Genes BRCA1 , Genes BRCA2 , Genes p53 , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Linfócitos T/imunologia , Linfócitos T Reguladores , Proteínas Supressoras de Tumor/imunologia , Proteínas Supressoras de Tumor/metabolismoRESUMO
In this study, we found that in the adipose tissue of wildtype animals, insulin and TGF-ß signalling converge via a BMP antagonist short gastrulation (sog) to regulate ECM remodelling. In tumour bearing animals, Sog also modulates TGF-ß signalling to regulate ECM accumulation in the fat body. TGF-ß signalling causes ECM retention in the fat body and subsequently depletes muscles of fat body-derived ECM proteins. Activation of insulin signalling, inhibition of TGF-ß signalling, or modulation of ECM levels via SPARC, Rab10 or Collagen IV in the fat body, is able to rescue tissue wasting in the presence of tumour. Together, our study highlights the importance of adipose ECM remodelling in the context of cancer cachexia.
Assuntos
Caquexia , Neoplasias , Animais , Caquexia/etiologia , Caquexia/metabolismo , Drosophila , Insulina , Corpo Adiposo/metabolismo , Tecido Adiposo/metabolismo , Fator de Crescimento Transformador beta , Neoplasias/complicaçõesRESUMO
BACKGROUND: Triple negative BCa (TNBC) is defined by a lack of expression of estrogen (ERα), progesterone (PgR) receptors and human epidermal growth factor receptor 2 (HER2) as assessed by protein expression and/or gene amplification. It makes up ~ 15% of all BCa and often has a poor prognosis. TNBC is not treated with endocrine therapies as ERα and PR negative tumors in general do not show benefit. However, a small fraction of the true TNBC tumors do show tamoxifen sensitivity, with those expressing the most common isoform of ERß1 having the most benefit. Recently, the antibodies commonly used to assess ERß1 in TNBC have been found to lack specificity, which calls into question available data regarding the proportion of TNBC that express ERß1 and any relationship to clinical outcome. METHODS: To confirm the true frequency of ERß1 in TNBC we performed robust ERß1 immunohistochemistry using the specific antibody CWK-F12 ERß1 on 156 primary TNBC cancers from patients with a median of 78 months (range 0.2-155 months) follow up. RESULTS: We found that high expression of ERß1 was not associated with increased recurrence or survival when assessed as percentage of ERß1 positive tumor cells or as Allred > 5. In contrast, the non-specific PPG5-10 antibody did show an association with recurrence and survival. CONCLUSIONS: Our data indicate that ERß1 expression in TNBC tumours does not associate with prognosis.
Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Receptor beta de Estrogênio/genética , Receptor alfa de Estrogênio/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Tamoxifeno/uso terapêutico , Prognóstico , Receptores de Estrogênio , Receptor ErbB-2/uso terapêutico , Receptores de Progesterona/metabolismoRESUMO
Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.
Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genoma Humano/genética , Neoplasias Ovarianas/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Estudos de Coortes , Ciclina E/genética , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Metilação de DNA , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Feminino , Genes BRCA1 , Genes BRCA2 , Genes da Neurofibromatose 1 , Mutação em Linhagem Germinativa/genética , Humanos , Mutagênese/genética , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/tratamento farmacológico , PTEN Fosfo-Hidrolase/genética , Regiões Promotoras Genéticas/genética , Proteína do Retinoblastoma/genéticaRESUMO
Carcinoma-associated mesenchymal stem cells (CA-MSCs) are critical stromal progenitor cells within the tumor microenvironment (TME). We previously demonstrated that CA-MSCs differentially express bone morphogenetic protein family members, promote tumor cell growth, increase cancer "stemness," and chemotherapy resistance. Here, we use RNA sequencing of normal omental MSCs and ovarian CA-MSCs to demonstrate global changes in CA-MSC gene expression. Using these expression profiles, we create a unique predictive algorithm to classify CA-MSCs. Our classifier accurately distinguishes normal omental, ovary, and bone marrow MSCs from ovarian cancer CA-MSCs. Suggesting broad applicability, the model correctly classifies pancreatic and endometrial cancer CA-MSCs and distinguishes cancer associated fibroblasts from CA-MSCs. Using this classifier, we definitively demonstrate ovarian CA-MSCs arise from tumor mediated reprograming of local tissue MSCs. Although cancer cells alone cannot induce a CA-MSC phenotype, the in vivo ovarian TME can reprogram omental or ovary MSCs to protumorigenic CA-MSCs (classifier score of >0.96). In vitro studies suggest that both tumor secreted factors and hypoxia are critical to induce the CA-MSC phenotype. Interestingly, although the breast cancer TME can reprogram bone marrow MSCs into CA-MSCs, the ovarian TME cannot, demonstrating for the first time that tumor mediated CA-MSC conversion is tissue and cancer type dependent. Together these findings (a) provide a critical tool to define CA-MSCs and (b) highlight cancer cell influence on distinct normal tissues providing powerful insights into the mechanisms underlying cancer specific metastatic niche formation. Stem Cells 2019;37:257-269.
Assuntos
Células-Tronco Mesenquimais/metabolismo , Neoplasias Ovarianas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Ovarianas/patologia , Microambiente TumoralRESUMO
BACKGROUND: Patients with highly mutated tumors, such as melanoma or smoking-related lung cancer, have higher rates of response to immune checkpoint blockade therapy, perhaps due to increased neoantigen expression. Many chemotherapies including platinum compounds are known to be mutagenic, but the impact of standard treatment protocols on mutational burden and resulting neoantigen expression in most human cancers is unknown. METHODS: We sought to quantify the effect of chemotherapy treatment on computationally predicted neoantigen expression for high grade serous ovarian carcinoma patients enrolled in the Australian Ovarian Cancer Study. In this series, 35 of 114 samples were collected after exposure to chemotherapy; 14 are matched with an untreated sample from the same patient. Our approach integrates whole genome and RNA sequencing of bulk tumor samples with class I MHC binding prediction and mutational signatures extracted from studies of chemotherapy-exposed Caenorhabditis elegans and Gallus gallus cells. We additionally investigated the relationship between neoantigens, tumor infiltrating immune cells estimated from RNA-seq with CIBERSORT, and patient survival. RESULTS: Greater neoantigen burden and CD8+ T cell infiltration in primary, pre-treatment samples were independently associated with improved survival. Relapse samples collected after chemotherapy harbored a median of 78% more expressed neoantigens than untreated primary samples, a figure that combines the effects of chemotherapy and other processes operative during relapse. The contribution from chemotherapy-associated signatures was small, accounting for a mean of 5% (range 0-16) of the expressed neoantigen burden in relapse samples. In both treated and untreated samples, most neoantigens were attributed to COSMIC Signature (3), associated with BRCA disruption, Signature (1), associated with a slow mutagenic process active in healthy tissue, and Signature (8), of unknown etiology. CONCLUSION: Relapsed ovarian cancers harbor more predicted neoantigens than primary tumors, but the increase is due to pre-existing mutational processes, not mutagenesis from chemotherapy.
Assuntos
Antígenos de Neoplasias/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Idoso , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Galinhas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Platina/efeitos adversosRESUMO
Salt marshes can play a vital role in mitigating the effects of global environmental change by dissipating incident storm wave energy and, through accretion, tracking increasing water depths consequent upon sea level rise. Atmospheric CO2 concentrations and nutrient availability are two key variables that can affect the biological processes that contribute to marsh surface elevation gain. We measured the effects of CO2 concentrations and nutrient availability on surface elevation change in intact mixed-species blocks of UK salt marsh using six open-top chambers receiving CO2 -enriched (800 ppm) or ambient (400 ppm) air. We found more rapid surface elevation gain in elevated CO2 conditions: an average increase of 3.4 mm over the growing season relative to ambient CO2 . Boosted regression analysis to determine the relative influence of different parameters on elevation change identified that a 10% reduction in microbial activity in elevated CO2 -grown blocks had a positive influence on elevation. The biomass of Puccinellia maritima also had a positive influence on elevation, while other salt marsh species (e.g. Suaeda maritima) had no influence or a negative impact on elevation. Reduced rates of water use by the vegetation in the high CO2 treatment could be contributing to elevation gain, either directly through reduced soil shrinkage or indirectly by decreasing microbial respiration rates due to lower redox levels in the soil. Eutrophication did not influence elevation change in either CO2 treatment despite doubling aboveground biomass. The role of belowground processes (transpiration, root growth and decomposition) in the vertical adjustment of European salt marshes, which are primarily minerogenic in composition, could increase as atmospheric CO2 concentrations rise and should be considered in future wetland models for the region. Elevated CO2 conditions could enhance resilience in vulnerable systems such as those with low mineral sediment supply or where migration upwards within the tidal frame is constrained.
Assuntos
Eutrofização , Áreas Alagadas , Biomassa , Dióxido de Carbono , Poaceae , SoloRESUMO
Whole genome duplication is frequently observed in cancer, and its prevalence in our prior analysis of end-stage, homologous recombination deficient high grade serous ovarian cancer (almost 80% of samples) supports the notion that whole genome duplication provides a fitness advantage under the selection pressure of therapy. Here, we therefore aim to identify potential therapeutic vulnerabilities in primary high grade serous ovarian cancer with whole genome duplication by assessing differentially expressed genes and pathways in 79 samples. We observe that MHC-II expression is lowest in tumors which have acquired whole genome duplication early in tumor evolution, and further demonstrate that reduced MHC-II expression occurs in subsets of tumor cells rather than in canonical antigen-presenting cells. Early whole genome duplication is also associated with worse patient survival outcomes. Our results suggest an association between the timing of whole genome duplication, MHC-II expression and clinical outcome in high grade serous ovarian cancer that warrants further investigation for therapeutic targeting.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Humanos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Regulação Neoplásica da Expressão Gênica , Duplicação Gênica , Genoma Humano , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismoRESUMO
PURPOSE: The purpose of this study was to evaluate RB1 expression and survival across ovarian carcinoma histotypes and how co-occurrence of BRCA1 or BRCA2 (BRCA) alterations and RB1 loss influences survival in tubo-ovarian high-grade serous carcinoma (HGSC). EXPERIMENTAL DESIGN: RB1 protein expression was classified by immunohistochemistry in ovarian carcinomas of 7,436 patients from the Ovarian Tumor Tissue Analysis consortium. We examined RB1 expression and germline BRCA status in a subset of 1,134 HGSC, and related genotype to overall survival (OS), tumor-infiltrating CD8+ lymphocytes, and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cells with and without BRCA1 alterations to model co-loss with treatment response. We performed whole-genome and transcriptome data analyses on 126 patients with primary HGSC to characterize tumors with concurrent BRCA deficiency and RB1 loss. RESULTS: RB1 loss was associated with longer OS in HGSC but with poorer prognosis in endometrioid ovarian carcinoma. Patients with HGSC harboring both RB1 loss and pathogenic germline BRCA variants had superior OS compared with patients with either alteration alone, and their median OS was three times longer than those without pathogenic BRCA variants and retained RB1 expression (9.3 vs. 3.1 years). Enhanced sensitivity to cisplatin and paclitaxel was seen in BRCA1-altered cells with RB1 knockout. Combined RB1 loss and BRCA deficiency correlated with transcriptional markers of enhanced IFN response, cell-cycle deregulation, and reduced epithelial-mesenchymal transition. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. CONCLUSIONS: Co-occurrence of RB1 loss and BRCA deficiency was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
Assuntos
Proteína BRCA1 , Proteína BRCA2 , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Proteínas de Ligação a Retinoblastoma , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Proteína BRCA2/genética , Proteína BRCA2/deficiência , Proteína BRCA1/genética , Proteína BRCA1/deficiência , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/imunologia , Proteínas de Ligação a Retinoblastoma/genética , Prognóstico , Ubiquitina-Proteína Ligases/genética , Gradação de Tumores , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa , Regulação Neoplásica da Expressão Gênica , Idoso , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismoRESUMO
While the introduction of poly-(ADP)-ribose polymerase (PARP) inhibitors in homologous recombination DNA repair (HR) deficient high grade serous ovarian, fallopian tube and primary peritoneal cancers (HGSC) has improved patient survival, resistance to PARP inhibitors frequently occurs. Preclinical and translational studies have identified multiple mechanisms of resistance; here we examined tumour samples collected from 26 women following treatment with PARP inhibitors as part of standard of care or their enrolment in clinical trials. Twenty-one had a germline or somatic BRCA1/2 mutation. We performed targeted sequencing of 63 genes involved in DNA repair processes or implicated in ovarian cancer resistance. We found that just three individuals had a small-scale mutation as a definitive resistance mechanism detected, having reversion mutations, while six had potential mechanisms of resistance detected, with alterations related to BRCA1 function and mutations in SHLD2. This study indicates that mutations in genes related to DNA repair are detected in a minority of HGSC patients as genetic mechanisms of resistance. Future research into resistance in HGSC should focus on copy number, transcriptional and epigenetic aberrations, and the contribution of the tumour microenvironment.
Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Antineoplásicos/uso terapêutico , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Microambiente TumoralRESUMO
There is an urgent need to address coastal dynamics as a fundamental interaction between physical and biological processes, particularly when trying to predict future biological-physical linkages under anticipated changes in environmental forcing. More integrated modelling, support for observational networks and the use of management interventions as controlled experimental exercises should now be vigorously pursued.
RESUMO
Limited evidence exists on the impact of spatial and temporal heterogeneity of high-grade serous ovarian cancer (HGSOC) on tumor evolution, clinical outcomes, and surgical operability. We perform systematic multi-site tumor mapping at presentation and matched relapse from 49 high-tumor-burden patients, operated up front. From SNP array-derived copy-number data, we categorize dendrograms representing tumor clonal evolution as sympodial or dichotomous, noting most chemo-resistant patients favor simpler sympodial evolution. Three distinct tumor evolutionary patterns from primary to relapse are identified, demonstrating recurrent disease may emerge from pre-existing or newly detected clones. Crucially, we identify spatial heterogeneity for clinically actionable homologous recombination deficiency scores and for poor prognosis biomarkers CCNE1 and MYC. Copy-number signature, phenotypic, proteomic, and proliferative-index heterogeneity further highlight HGSOC complexity. This study explores HGSOC evolution and dissemination across space and time, its impact on optimal surgical cytoreductive effort and clinical outcomes, and its consequences for clinical decision-making.
Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/cirurgia , Neoplasias Ovarianas/patologia , Proteômica , Recidiva Local de Neoplasia/genéticaRESUMO
Background: Despite initial response to platinum-based chemotherapy and PARP inhibitor therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire lethal drug resistance; indeed, ~15% of individuals have de novo platinum-refractory disease. Objectives: To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing response in patient-derived xenograft (PDX) models of HGSC. Design and methods: Of 13 PRR HGSC PDX, six were primary PRR, derived from chemotherapy-naïve samples (one was BRCA2 mutant) and seven were from samples obtained following chemotherapy treatment in the clinic (five were mutant for either BRCA1 or BRCA2 (BRCA1/2), four with prior PARPi exposure), recapitulating the population of individuals with aggressive treatment-resistant HGSC in the clinic. Molecular analyses and in vivo treatment studies were undertaken. Results: Seven out of thirteen PRR PDX (54%) were sensitive to treatment with the AMA, eribulin (time to progressive disease (PD) ⩾100 days from the start of treatment) and 11 out of 13 PDX (85%) derived significant benefit from eribulin [time to harvest (TTH) for each PDX with p < 0.002]. In 5 out of 10 platinum-refractory HGSC PDX (50%) and one out of three platinum-resistant PDX (33%), eribulin was more efficacious than was cisplatin, with longer time to PD and significantly extended TTH (each PDX p < 0.02). Furthermore, four of these models were extremely sensitive to all three AMA tested, maintaining response until the end of the experiment (120d post-treatment start). Despite harbouring secondary BRCA2 mutations, two BRCA2-mutant PDX models derived from heavily pre-treated individuals were sensitive to AMA. PRR HGSC PDX models showing greater sensitivity to AMA had high proliferative indices and oncogene expression. Two PDX models, both with prior chemotherapy and/or PARPi exposure, were refractory to all AMA, one of which harboured the SLC25A40-ABCB1 fusion, known to upregulate drug efflux via MDR1. Conclusion: The efficacy observed for eribulin in PRR HGSC PDX was similar to that observed for paclitaxel, which transformed ovarian cancer clinical practice. Eribulin is therefore worthy of further consideration in clinical trials, particularly in ovarian carcinoma with early failure of carboplatin/paclitaxel chemotherapy.
RESUMO
High-grade serous ovarian cancer (HGSC) is frequently characterized by homologous recombination (HR) DNA repair deficiency and, while most such tumors are sensitive to initial treatment, acquired resistance is common. We undertook a multiomics approach to interrogate molecular diversity in end-stage disease, using multiple autopsy samples collected from 15 women with HR-deficient HGSC. Patients had polyclonal disease, and several resistance mechanisms were identified within most patients, including reversion mutations and HR restoration by other means. We also observed frequent whole-genome duplication and global changes in immune composition with evidence of immune escape. This analysis highlights diverse evolutionary changes within HGSC that evade therapy and ultimately overwhelm individual patients.
Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Multiômica , Carcinoma Epitelial do Ovário , Recombinação Homóloga/genética , Cistadenocarcinoma Seroso/genéticaRESUMO
Background: Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC. Patients and methods: RB1 protein expression patterns were classified by immunohistochemistry in epithelial ovarian carcinomas of 7436 patients from 20 studies participating in the Ovarian Tumor Tissue Analysis consortium and assessed for associations with overall survival (OS), accounting for patient age at diagnosis and FIGO stage. We examined RB1 expression and germline BRCA status in a subset of 1134 HGSC, and related genotype to survival, tumour infiltrating CD8+ lymphocyte counts and transcriptomic subtypes. Using CRISPR-Cas9, we deleted RB1 in HGSC cell lines with and without BRCA1 mutations to model co-loss with treatment response. We also performed genomic analyses on 126 primary HGSC to explore the molecular characteristics of concurrent homologous recombination deficiency and RB1 loss. Results: RB1 protein loss was most frequent in HGSC (16.4%) and was highly correlated with RB1 mRNA expression. RB1 loss was associated with longer OS in HGSC (hazard ratio [HR] 0.74, 95% confidence interval [CI] 0.66-0.83, P = 6.8 ×10-7), but with poorer prognosis in ENOC (HR 2.17, 95% CI 1.17-4.03, P = 0.0140). Germline BRCA mutations and RB1 loss co-occurred in HGSC (P < 0.0001). Patients with both RB1 loss and germline BRCA mutations had a superior OS (HR 0.38, 95% CI 0.25-0.58, P = 5.2 ×10-6) compared to patients with either alteration alone, and their median OS was three times longer than non-carriers whose tumours retained RB1 expression (9.3 years vs. 3.1 years). Enhanced sensitivity to cisplatin (P < 0.01) and paclitaxel (P < 0.05) was seen in BRCA1 mutated cell lines with RB1 knockout. Among 126 patients with whole-genome and transcriptome sequence data, combined RB1 loss and genomic evidence of homologous recombination deficiency was correlated with transcriptional markers of enhanced interferon response, cell cycle deregulation, and reduced epithelial-mesenchymal transition in primary HGSC. CD8+ lymphocytes were most prevalent in BRCA-deficient HGSC with co-loss of RB1. Conclusions: Co-occurrence of RB1 loss and BRCA mutation was associated with exceptionally long survival in patients with HGSC, potentially due to better treatment response and immune stimulation.
RESUMO
PURPOSE: Tubo-ovarian cancer (TOC) is a sentinel cancer for BRCA1 and BRCA2 pathogenic variants (PVs). Identification of a PV in the first member of a family at increased genetic risk (the proband) provides opportunities for cancer prevention in other at-risk family members. Although Australian testing rates are now high, PVs in patients with TOC whose diagnosis predated revised testing guidelines might have been missed. We assessed the feasibility of detecting PVs in this population to enable genetic risk reduction in relatives. PATIENTS AND METHODS: In this pilot study, deceased probands were ascertained from research cohort studies, identification by a relative, and gynecologic oncology clinics. DNA was extracted from archival tissue or stored blood for panel sequencing of 10 risk-associated genes. Testing of deceased probands ascertained through clinic records was performed with a consent waiver. RESULTS: We identified 85 PVs in 84 of 787 (11%) probands. Familial contacts of 39 of 60 (65%) deceased probands with an identified recipient (60 of 84; 71%) have received a written notification of results, with follow-up verbal contact made in 85% (33 of 39). A minority of families (n = 4) were already aware of the PV. For many (29 of 33; 88%), the genetic result provided new information and referral to a genetic service was accepted in most cases (66%; 19 of 29). Those who declined referral (4 of 29) were all male next of kin whose family member had died more than 10 years before. CONCLUSION: We overcame ethical and logistic challenges to demonstrate that retrospective genetic testing to identify PVs in previously untested deceased probands with TOC is feasible. Understanding reasons for a family member's decision to accept or decline a referral will be important for guiding future TRACEBACK projects.
Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Austrália , Neoplasias da Mama/genética , Carcinoma Epitelial do Ovário/genética , Família , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Masculino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/prevenção & controle , Projetos Piloto , Estudos RetrospectivosRESUMO
Fewer than half of all patients with advanced-stage high-grade serous ovarian cancers (HGSCs) survive more than five years after diagnosis, but those who have an exceptionally long survival could provide insights into tumor biology and therapeutic approaches. We analyzed 60 patients with advanced-stage HGSC who survived more than 10 years after diagnosis using whole-genome sequencing, transcriptome and methylome profiling of their primary tumor samples, comparing this data to 66 short- or moderate-term survivors. Tumors of long-term survivors were more likely to have multiple alterations in genes associated with DNA repair and more frequent somatic variants resulting in an increased predicted neoantigen load. Patients clustered into survival groups based on genomic and immune cell signatures, including three subsets of patients with BRCA1 alterations with distinctly different outcomes. Specific combinations of germline and somatic gene alterations, tumor cell phenotypes and differential immune responses appear to contribute to long-term survival in HGSC.
Assuntos
Genômica , Neoplasias Ovarianas , Feminino , Humanos , Sobreviventes , Neoplasias Ovarianas/genéticaRESUMO
The survival rates for women with ovarian cancer have shown scant improvement in recent years, with a 5-year survival rate of less than 40% for women diagnosed with advanced ovarian cancer. High-grade serous ovarian cancer (HGSOC) is the most lethal subtype where the majority of women develop recurrent disease and chemotherapy resistance, despite over 70%-80% of patients initially responding to platinum-based chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway regulates many vital processes such as cell growth, survival and metabolism. However, this pathway is frequently dysregulated in cancers including different subtypes of ovarian cancer, through amplification or somatic mutations of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), amplification of AKT isoforms, or deletion or inactivation of PTEN. Further evidence indicates a role for the PI3K/AKT/mTOR pathway in the development of chemotherapy resistance in ovarian cancer. Thus, targeting key nodes of the PI3K/AKT/mTOR pathway is a potential therapeutic prospect. In this review, we outline dysregulation of PI3K signaling in ovarian cancer, with a particular emphasis on HGSOC and platinum-resistant disease. We review pre-clinical evidence for inhibitors of the main components of the PI3K pathway and highlight past, current and upcoming trials in ovarian cancers for different inhibitors of the pathway. Whilst no inhibitors of the PI3K/AKT/mTOR pathway have thus far advanced to the clinic for the treatment of ovarian cancer, several promising compounds which have the potential to restore platinum sensitivity and improve clinical outcomes for patients are under evaluation and in various phases of clinical trials.
RESUMO
Cachexia, the wasting syndrome commonly observed in advanced cancer patients, accounts for up to one-third of cancer-related mortalities. We have established a Drosophila larval model of organ wasting whereby epithelial overgrowth in eye-antennal discs leads to wasting of the adipose tissue and muscles. The wasting is associated with fat-body remodeling and muscle detachment and is dependent on tumor-secreted matrix metalloproteinase 1 (Mmp1). Mmp1 can both modulate TGFß signaling in the fat body and disrupt basement membrane (BM)/extracellular matrix (ECM) protein localization in both the fat body and the muscle. Inhibition of TGFß signaling or Mmps in the fat body/muscle using a QF2-QUAS binary expression system rescues muscle wasting in the presence of tumor. Altogether, our study proposes that tumor-derived Mmps are central mediators of organ wasting in cancer cachexia.