Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 49(2): 275-287.e5, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30054206

RESUMO

Airway epithelial cells (AECs) secrete innate immune cytokines that regulate adaptive immune effector cells. In allergen-sensitized humans and mice, the airway and alveolar microenvironment is enriched with colony stimulating factor-1 (CSF1) in response to allergen exposure. In this study we found that AEC-derived CSF1 had a critical role in the production of allergen reactive-IgE production. Furthermore, spatiotemporally secreted CSF1 regulated the recruitment of alveolar dendritic cells (DCs) and enhanced the migration of conventional DC2s (cDC2s) to the draining lymph node in an interferon regulatory factor 4 (IRF4)-dependent manner. CSF1 selectively upregulated the expression of the chemokine receptor CCR7 on the CSF1R+ cDC2, but not the cDC1, population in response to allergen stimuli. Our data describe the functional specification of CSF1-dependent DC subsets that link the innate and adaptive immune responses in T helper 2 (Th2) cell-mediated allergic lung inflammation.


Assuntos
Alérgenos/imunologia , Células Dendríticas/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Receptores CCR7/biossíntese , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Animais , Linhagem Celular , Movimento Celular/imunologia , Células Dendríticas/classificação , Células Epiteliais/citologia , Células Epiteliais/imunologia , Humanos , Imunidade Inata/imunologia , Imunoglobulina E/imunologia , Fatores Reguladores de Interferon/imunologia , Linfonodos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células RAW 264.7 , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Células Th2/imunologia , Regulação para Cima/imunologia
2.
Nat Immunol ; 15(3): 239-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487321

RESUMO

Here we found that the transcription repressor DREAM bound to the promoter of the gene encoding A20 to repress expression of this deubiquitinase that suppresses inflammatory NF-κB signaling. DREAM-deficient mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, binding of the transcription factor USF1 to the DRE-associated E-box domain in the gene encoding A20 activated its expression in response to inflammatory stimuli. Our studies define the critical opposing functions of DREAM and USF1 in inhibiting and inducing A20 expression, respectively, and thereby the strength of NF-κB signaling. Targeting of DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy for the treatment of diseases associated with unconstrained NF-κB activity, such as acute lung injury.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Fatores Estimuladores Upstream/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Imunoprecipitação da Cromatina , Cisteína Endopeptidases , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Immunoblotting , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitina-Proteína Ligases/genética
3.
Am J Respir Crit Care Med ; 207(11): 1451-1463, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790376

RESUMO

Rationale: The resolution of inflammation is an active process coordinated by mediators and immune cells to restore tissue homeostasis. However, the mechanisms for resolving eosinophilic allergic lung inflammation triggered by inhaled allergens have not been fully elucidated. Objectives: Our objectives were to investigate the cellular mechanism of tissue-resident macrophages involved in the resolution process of eosinophilic lung inflammation. Methods: For the study, we used the institutional review board-approved protocol for human subsegmental bronchoprovocation with allergen, mouse models for allergic lung inflammation, and novel transgenic mice, including a conditional CCL26 knockout. The samples were analyzed using mass cytometry, single-cell RNA sequencing, and biophysical and immunological analyses. Measurements and Main Results: We compared alveolar macrophage (AM) subsets in the BAL before and after allergen provocation. In response to provocation with inhaled allergens, the subsets of AMs are dynamically changed in humans and mice. In the steady state, the AM subset expressing CX3CR1 is a relatively small fraction in bronchoalveolar space and lung tissue but drastically increases after allergen challenges. This subset presents unique patterns of gene expression compared with classical AMs, expressing high C1q family genes. CX3CR1+ macrophages are activated by airway epithelial cell-derived CCL26 via a receptor-ligand interaction. The binding of CCL26 to the CX3CR1+ receptor induces CX3CR1+ macrophages to secrete C1q, subsequently facilitating the clearance of eosinophils. Furthermore, the depletion of CX3CR1 macrophages or CCL26 in airway epithelial cells delays the resolution of allergic lung inflammation displaying prolonged tissue eosinophilia. Conclusions: These findings indicate that the CCL26-CX3CR1 pathway is pivotal in resolving eosinophilic allergic lung inflammation.


Assuntos
Alveolite Alérgica Extrínseca , Hipersensibilidade , Pneumonia , Eosinofilia Pulmonar , Humanos , Camundongos , Animais , Complemento C1q/metabolismo , Pulmão/metabolismo , Macrófagos , Alérgenos , Inflamação/metabolismo , Pneumonia/metabolismo , Quimiocina CCL26/metabolismo
4.
J Allergy Clin Immunol ; 152(5): 1141-1152.e2, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562753

RESUMO

BACKGROUND: Dendritic cells (DCs) are heterogeneous, comprising multiple subsets with unique functional specifications. Our previous work has demonstrated that the specific conventional type 2 DC subset, CSF1R+cDC2s, plays a critical role in sensing aeroallergens. OBJECTIVE: It remains to be understood how CSF1R+cDC2s recognize inhaled allergens. We sought to elucidate the transcriptomic programs and receptor-ligand interactions essential for function of this subset in allergen sensitization. METHODS: We applied single-cell RNA sequencing to mouse lung DCs. Conventional DC-selective knockout mouse models were employed, and mice were subjected to inhaled allergen sensitization with multiple readouts of asthma pathology. Under the clinical arm of this work, human lung transcriptomic data were integrated with mouse data, and bronchoalveolar lavage (BAL) specimens were collected from subjects undergoing allergen provocation, with samples assayed for C1q. RESULTS: We found that C1q is selectively enriched in lung CSF1R+cDC2s, but not in other lung cDC2 or cDC1 subsets. Depletion of C1q in conventional DCs significantly attenuates allergen sensing and features of asthma. Additionally, we found that C1q binds directly to human dust mite allergen, and the C1q receptor CD91 (LRP1) is required for lung CSF1R+cDC2s to recognize the C1q-allergen complex and induce allergic lung inflammation. Lastly, C1q is enriched in human BAL samples following subsegmental allergen challenge, and human RNA sequencing data demonstrate close homology between lung IGSF21+DCs and mouse CSF1R+cDC2s. CONCLUSIONS: C1q is secreted from the CSF1R+cDC2 subset among conventional DCs. Our data indicate that the C1q-LRP1 axis represents a candidate for translational therapeutics in the prevention and suppression of allergic lung inflammation.


Assuntos
Asma , Pneumonia , Animais , Humanos , Camundongos , Alérgenos/metabolismo , Asma/metabolismo , Complemento C1q/metabolismo , Células Dendríticas , Camundongos Knockout , Pneumonia/metabolismo , Receptores Proteína Tirosina Quinases , Receptores de Fator Estimulador de Colônias/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L568-L579, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697923

RESUMO

The prevalence of electronic cigarette (EC) use among adult with asthma has continued to increase over time, in part due to the belief of being less harmful than smoking. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. In the present project, we tested the hypothesis that EC use contributes to respiratory damage and worsening inflammation in the lungs of patients with asthma. To define the consequences of EC exposure in established asthma, we used a mouse model with/without preexisting asthma for short-term exposure to EC aerosols. C57/BL6J mice were sensitized and challenged with a DRA (dust mite, ragweed, Aspergillus fumigates, 200 µg/mL) mixture and exposed daily to EC with nicotine (2% nicotine in 30:70 propylene glycol: vegetable glycerin) or filtered air for 2 wk. The mice were evaluated at 24 h after the final EC exposure. After EC exposure in asthmatic mice, lung inflammatory cell infiltration and goblet cell hyperplasia were increased, whereas EC alone did not cause airway inflammation. Our data also show that mitochondrial DNA (mtDNA) content and a key mtDNA regulator, mitochondrial transcription factor A (TFAM), are reduced in asthmatic EC-exposed mice in a sex-dependent manner. Together, these results indicate that TFAM loss in lung epithelium following EC contributes to male-predominant sex pathological differences, including mitochondrial damage, inflammation, and remodeling in asthmatic airways.NEW & NOTEWORTHY Respiratory immunity is dysregulated in preexisting asthma, and further perturbations by EC use could exacerbate asthma severity. However, the extent of their toxicity and the involved mechanisms contributing to the deleterious impact of EC exposure on patients with preexisting asthma have not been delineated. We found that EC has unique biological impacts in lungs and potential sex differences with loss of TFAM, a key mtDNA regulator, in lung epithelial region from our animal EC study.


Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Pneumonia , Humanos , Adulto , Masculino , Feminino , Camundongos , Animais , Nicotina/toxicidade , Aerossóis e Gotículas Respiratórios , Asma/patologia , Pulmão/patologia , Pneumonia/patologia , Inflamação/patologia , Modelos Animais de Doenças , DNA Mitocondrial
6.
Kidney Int ; 103(6): 1093-1104, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921719

RESUMO

Transcriptional profiling studies have identified several protective genes upregulated in tubular epithelial cells during acute kidney injury (AKI). Identifying upstream transcriptional regulators could lead to the development of therapeutic strategies augmenting the repair processes. SOX9 is a transcription factor controlling cell-fate during embryonic development and adult tissue homeostasis in multiple organs including the kidneys. SOX9 expression is low in adult kidneys; however, stress conditions can trigger its transcriptional upregulation in tubular epithelial cells. SOX9 plays a protective role during the early phase of AKI and facilitates repair during the recovery phase. To identify the upstream transcriptional regulators that drive SOX9 upregulation in tubular epithelial cells, we used an unbiased transcription factor screening approach. Preliminary screening and validation studies show that zinc finger protein 24 (ZFP24) governs SOX9 upregulation in tubular epithelial cells. ZFP24, a Cys2-His2 (C2H2) zinc finger protein, is essential for oligodendrocyte maturation and myelination; however, its role in the kidneys or in SOX9 regulation remains unknown. Here, we found that tubular epithelial ZFP24 gene ablation exacerbated ischemia, rhabdomyolysis, and cisplatin-associated AKI. Importantly, ZFP24 gene deletion resulted in suppression of SOX9 upregulation in injured tubular epithelial cells. Chromatin immunoprecipitation and promoter luciferase assays confirmed that ZFP24 bound to a specific site in both murine and human SOX9 promoters. Importantly, CRISPR/Cas9-mediated mutation in the ZFP24 binding site in the SOX9 promoter in vivo led to suppression of SOX9 upregulation during AKI. Thus, our findings identify ZFP24 as a critical stress-responsive transcription factor protecting tubular epithelial cells through SOX9 upregulation.


Assuntos
Injúria Renal Aguda , Fatores de Transcrição SOX9 , Animais , Humanos , Camundongos , Injúria Renal Aguda/prevenção & controle , Células Epiteliais/metabolismo , Rim/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Dedos de Zinco
7.
Toxicol Appl Pharmacol ; 462: 116381, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681128

RESUMO

Damage associated molecular patterns (DAMPs) are molecules released from dead/dying cells following toxicant and/or environmental exposures that activate the immune response through binding of pattern recognition receptors (PRRs). Excessive production of DAMPs or failed clearance leads to chronic inflammation and delayed inflammation resolution. One category of DAMPs are oxidized phospholipids (oxPLs) produced upon exposure to high levels of oxidative stress, such as following ozone (O3) induced inflammation. OxPLs are bound by multiple classes of PRRs that include scavenger receptors (SRs) such as SR class B-1 (SR-BI) and toll-like receptors (TLRs). Interactions between oxPLs and PRRs appear to regulate inflammation; however, the role of SR-BI in oxPL-induced lung inflammation has not been defined. Therefore, we hypothesize that SR-BI is critical in protecting the lung from oxPL-induced pulmonary inflammation/injury. To test this hypothesis, C57BL/6J (WT) female mice were dosed with oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (oxPAPC) by oropharyngeal aspiration which increased pulmonary SR-BI expression. Following oxPAPC exposure, SR-BI deficient (SR-BI-/-) mice exhibited increased lung pathology and inflammatory cytokine/chemokine production. Lipidomic analysis revealed that SR-BI-/- mice had an altered pulmonary lipidome prior to and following oxPAPC exposure, which correlated with increased oxidized phosphatidylcholines (PCs). Finally, we characterized TLR4-mediated activation of NF-κB following oxPAPC exposure and discovered that SR-BI-/- mice had increased TLR4 mRNA expression in lung tissue and macrophages, increased nuclear p65, and decreased cytoplasmic IκBα. Overall, we conclude that SR-BI is required for limiting oxPAPC-induced lung pathology by maintaining lipid homeostasis, reducing oxidized PCs, and attenuating TLR4-NF-κB activation, thereby preventing excessive and persistent inflammation.


Assuntos
Fosfolipídeos , Pneumonia , Animais , Feminino , Camundongos , Proteínas de Transporte , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
J Surg Res ; 283: 368-376, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36427447

RESUMO

INTRODUCTION: Patients with sepsis exhibit significant, persistent immunologic dysfunction. Evidence supports the hypothesis that epigenetic regulation of key cytokines plays an important role in this dysfunction. In sepsis, circulating microvesicles (MVs) containing elevated levels of DNA methyltransferase (DNMT) mRNA cause gene methylation and silencing in recipient cells. We sought to examine the functional role of MV DNMT proteins in this immunologic dysfunction. METHODS: In total, 33 patients were enrolled within 24 h of sepsis diagnosis (23 sepsis, 10 critically ill controls). Blood and MVs were collected on days 1, 3, and 5 of sepsis, and protein was isolated from the MVs. Levels of DNMT protein and activity were quantified. MVs were produced in vitro by stimulating naïve monocytes with lipopolysaccharide. Methylation was assessed using bisulfate site-specific qualitative real-time polymerase chain reaction. RESULTS: The size of MVs in the patients with sepsis decreased from days 1 to 5 compared to the control group. Circulating MVs contained significantly higher levels of DNMT 1 and 3A, protein. We recapitulated the production of these DNMT-containing MVs in vitro by treating monocytes with lipopolysaccharide. We found that exposing naïve monocytes to these MVs resulted in increased promoter methylation of tumor necrosis factor alpha. CONCLUSIONS: An analysis of the isolated MVs revealed higher levels of DNMT proteins in septic patients than those in nonseptic patients. Exposing naïve monocytes to DNMT-containing MVs produced in vitro resulted in hypermethylation of tumor necrosis factor alpha, a key cytokine implicated in postsepsis immunosuppression. These results suggest that DNMT-containing MVs cause epigenetic changes in recipient cells. This study highlights a novel role for MVs in the immune dysfunction of patients with sepsis.


Assuntos
Epigênese Genética , Sepse , Humanos , Metiltransferases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos , Terapia de Imunossupressão , Citocinas/metabolismo , DNA
9.
Nicotine Tob Res ; 25(12): 1904-1908, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349133

RESUMO

INTRODUCTION: Although the greater popularity of electronic cigarettes (EC) among asthmatics is alarming, there is limited knowledge of the long-term consequences of EC exposure in asthmatics. AIMS AND METHODS: Mild asthmatic C57/BL6J adult male and female mice were established by intranasal insufflation with three combined allergens. The asthmatic and age and sex-matched' naïve mice were exposed to air, nicotine-free (propylene glycol [PG]/vegetable glycerin [VG]-only), or PG/VG+Nicotine, 4 hours daily for 3 months. The effects of EC exposure were accessed by measuring cytokines in bronchoalveolar lavage, periodic acid-schiff (PAS) staining, mitochondrial DNA copy numbers (mtCN), and the transcriptome in the lung. Significance was false discovery rate <0.2 for transcriptome and 0.05 for the others. RESULTS: In asthmatic mice, PG/VG+Nicotine increased PAS-positive cells and IL-13 compared to mice exposed to air and PG/VG-only. In naïve mice exposed to PG/VG+Nicotine and PG/VG-only, higher INF-γ was observed compared to mice exposed only to air. PG/VG-only and PG/VG+Nicotine had significantly higher mtCN compared to air exposure in asthmatic mice, while the opposite pattern was observed in non-asthmatic naïve mice. Different gene expression patterns were profoundly found for asthmatic mice exposed to PG/VG+Nicotine compared to PG/VG-only, including genes involved in mitochondrial dysfunction, oxidative phosphorylation, and p21-activated kinase (PAK) signaling. CONCLUSIONS: This study provides experimental evidence of the potential impact of nicotine enhancement on the long-term effects of EC in asthmatics compared to non-asthmatics. IMPLICATIONS: The findings from this study indicate the potential impact of EC in asthmatics by addressing multiple biological markers. The long-term health outcomes of EC in the susceptible group can be instrumental in supporting policymaking and educational campaigns and informing the public, healthcare providers, and EC users about the underlying risks of EC use.


Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Masculino , Camundongos , Feminino , Animais , Nicotina/efeitos adversos , Asma/etiologia , Pulmão , Propilenoglicol/farmacologia , Glicerol/farmacologia , Verduras
10.
J Immunol ; 204(10): 2661-2670, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32253243

RESUMO

Idiopathic pulmonary fibrosis is a deadly disease characterized by excessive extracellular matrix deposition in the lungs, resulting in decreased pulmonary function. Although epithelial cells and fibroblasts have long been the focus of idiopathic pulmonary fibrosis research, the role of various subpopulations of macrophages in promoting a fibrotic response is an emerging target. Healthy lungs are composed of two macrophage populations, tissue-resident alveolar macrophages and interstitial macrophages, which help to maintain homeostasis. After injury, tissue-resident alveolar macrophages are depleted, and monocytes from the bone marrow (BM) traffic to the lungs along a CCL2/CCR2 axis and differentiate into monocyte-derived alveolar macrophages (Mo-AMs), which is a cell population implicated in murine models of pulmonary fibrosis. In this study, we sought to determine how IL-1R-associated kinase-M (IRAK-M), a negative regulator of TLR signaling, modulates monocyte trafficking into the lungs in response to bleomycin. Our data indicate that after bleomycin challenge, mice lacking IRAK-M have decreased monocyte trafficking and reduced Mo-AMs in their lungs. Although IRAK-M expression did not regulate differences in chemokines, cytokines, or adhesion molecules associated with monocyte recruitment, IRAK-M was necessary for CCR2 upregulation following bleomycin challenge. This finding prompted us to develop a competitive BM chimera model, which demonstrated that expression of BM-derived IRAK-M was necessary for monocyte trafficking into the lung and for subsequent enhanced collagen deposition. These data indicate that IRAK-M regulates monocyte trafficking by increasing the expression of CCR2, resulting in enhanced monocyte translocation into the lung, Mo-AM differentiation, and development of pulmonary fibrosis.


Assuntos
Antibacterianos/uso terapêutico , Bleomicina/uso terapêutico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Monócitos/imunologia , Animais , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/imunologia , Quinases Associadas a Receptores de Interleucina-1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Receptores CCR2/metabolismo , Transdução de Sinais , Regulação para Cima
11.
Nutr Metab Cardiovasc Dis ; 31(4): 1227-1237, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33549435

RESUMO

BACKGROUND AND AIMS: High Protein diets may be associated with endocrine responses that favor improved metabolic outcomes. We studied the response to High Protein (HP) versus High Carbohydrate (HC) Diets in terms of incretin hormones GLP-1 and GIP, the hunger hormone ghrelin and BNP, which is associated with cardiac function. We hypothesized that HP diets induce more pronounced release of glucose lowering hormones, suppress hunger and improve cardiac function. METHODS AND RESULTS: 24 obese women and men with prediabetes were recruited and randomized to either a High Protein (HP) (n = 12) or High Carbohydrate (HC) (n = 12) diet for 6 months with all food provided. OGTT and MTT were performed and GLP-1, GIP, Ghrelin, BNP, insulin and glucose were measured at baseline and 6 months on the respective diets. Our studies showed that subjects on the HP diet had 100% remission of prediabetes compared to only 33% on the HC diet with similar weight loss. HP diet subjects had a greater increase in (1) OGTT GLP-1 AUC(p = 0.001) and MTT GLP-1 AUC(p = 0.001), (2) OGTT GIP AUC(p = 0.005) and MTT GIP AUC(p = 0.005), and a greater decrease in OGTT ghrelin AUC(p = 0.005) and MTT ghrelin AUC(p = 0.001) and BNP(p = 0.001) compared to the HC diet at 6 months. CONCLUSIONS: This study demonstrates that the HP diet increases GLP-1 and GIP which may be responsible in part for improved insulin sensitivity and ß cell function compared to the HC diet. HP ghrelin results demonstrate the HP diet can reduce hunger more effectively than the HC diet. BNP and other CVRF, metabolic parameters and oxidative stress are significantly improved compared to the HC diet. CLINICALTRIALS. GOV IDENTIFIER: NCT01642849.


Assuntos
Dieta Rica em Proteínas , Carboidratos da Dieta/administração & dosagem , Incretinas/sangue , Obesidade/dietoterapia , Estado Pré-Diabético/dietoterapia , Adulto , Regulação do Apetite , Biomarcadores/sangue , Feminino , Polipeptídeo Inibidor Gástrico/sangue , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Fatores de Risco de Doenças Cardíacas , Humanos , Fome , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue , Obesidade/sangue , Obesidade/diagnóstico , Estado Pré-Diabético/sangue , Estado Pré-Diabético/diagnóstico , Estudos Prospectivos , Indução de Remissão , Tennessee , Fatores de Tempo , Resultado do Tratamento , Redução de Peso , Adulto Jovem
12.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L921-L930, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159972

RESUMO

The incidence of asthma has increased from 5.5% to near 8% of the population, which is a major health concern. The hallmarks of asthma include eosinophilic airway inflammation that is associated with chronic airway remodeling. Allergic airway inflammation is characterized by a complex interplay of resident and inflammatory cells. MicroRNAs (miRNAs) are small noncoding RNAs that function as posttranscriptional modulators of gene expression. However, the role of miRNAs, specifically miR-451, in the regulation of allergic airway inflammation is unexplored. Our previous findings showed that oxidant stress regulates miR-451 gene expression in macrophages during an inflammatory process. In this paper, we examined the role of miR-451 in regulating macrophage phenotype using an experimental poly-allergenic murine model of allergic airway inflammation. We found that miR-451 contributes to the allergic induction of CCL17 in the lung and plays a key role in proasthmatic macrophage activation. Remarkably, administration of a Sirtuin 2 (Sirt2) inhibitor diminished alternate macrophage activation and markedly abrogated triple-allergen [dust mite, ragweed, Aspergillus fumigatus (DRA)]-induced lung inflammation. These data demonstrate a role for miR-451 in modulating allergic inflammation by influencing allergen-mediated macrophages phenotype.


Assuntos
Asma/genética , Macrófagos Alveolares/imunologia , MicroRNAs/genética , Pneumonia/genética , Sirtuína 2/genética , Alérgenos/administração & dosagem , Animais , Anti-Inflamatórios/farmacologia , Antígenos de Plantas/administração & dosagem , Aspergillus/química , Aspergillus/imunologia , Asma/induzido quimicamente , Asma/patologia , Asma/terapia , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Modelos Animais de Doenças , Fungos/química , Fungos/imunologia , Furanos/farmacologia , Regulação da Expressão Gênica , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/imunologia , Extratos Vegetais/administração & dosagem , Pneumonia/induzido quimicamente , Pneumonia/patologia , Pneumonia/terapia , Pyroglyphidae/química , Pyroglyphidae/imunologia , Quinolinas/farmacologia , Transdução de Sinais , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/imunologia
13.
Am J Physiol Endocrinol Metab ; 318(5): E689-E700, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154744

RESUMO

Hypoxia leading to stabilization of hypoxia-inducible factor 1α (HIF-1α) serves as an early upstream initiator for adipose tissue (AT) dysfunction. Monocyte-derived macrophage infiltration in AT contributes to inflammation, fibrosis and obesity-related metabolic dysfunction. It was previously reported that myeloid cell-specific deletion of Hif-1α protected against high-fat diet (HFD)-induced AT dysfunction. Prolyl hydroxylases (PHDs) are key regulators of HIF-1α. We examined the effects of myeloid cell-specific upregulation and stabilization of Hif-1α via deletion of prolyl-hydroxylase 2 (Phd2) and whether interleukin-1 receptor associated kinase-M (Irak-M), a known downstream target of Hif-1α, contributes to Hif-1α-induced AT dysfunction. Our data show that with HFD, Hif-1α and Irak-M expressions were increased in the AT macrophages of Phd2flox/flox/LysMcre mice compared with LysMcre mice. With HFD, Phd2flox/flox/LysMcre mice exhibited increased AT inflammation, fibrosis, and systemic insulin resistance compared with control mice. Furthermore, Phd2flox/flox/LysMcre mice bone marrow-derived macrophages exposed to hypoxia in vitro also had increased expressions of both Hif-1α and Irak-M. In wild-type mice, HFD induced upregulation of both HIF-1a and Irak-M in adipose tissue. Despite equivalent expression of Hif-1α compared with wild-type mice, globally-deficient Irak-M mice fed a HFD exhibited less macrophage infiltration, decreased inflammation and fibrosis and improved glucose tolerance. Global Irak-M deficiency was associated with an alternatively-activated macrophage phenotype in the AT after HFD. Together, these data show for the first time that an Irak-M-dependent mechanism likely mediates obesity-related AT dysfunction in conjunction with Hif-1α upregulation.


Assuntos
Tecido Adiposo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Animais , Dieta Hiperlipídica , Resistência à Insulina/fisiologia , Camundongos , Camundongos Knockout , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo
14.
Crit Care Med ; 48(11): 1565-1571, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796183

RESUMO

OBJECTIVES: This report provides analyses and perspective of a survey of critical care workforce, workload, and burnout among the intensivists and advanced practice providers of established U.S. and Canadian critical care organizations and provides a research agenda. DESIGN: A 97-item electronic survey questionnaire was distributed to the leaders of 27 qualifying organizations. SETTING: United States and Canada. PARTICIPANTS: Leaders of critical care organizations in the United States and Canada. INTERVENTIONS: None. DATA SYNTHESIS AND MAIN RESULTS: We received 23 responses (85%). The critical care organization survey recorded substantial variability of most organizational aspects that were not restricted by the critical care organization definition or regulatory mandates. The most common physician staffing model was a combination of full-time and part-time intensivists. Approximately 80% of critical care organizations had dedicated advanced practice providers that staffed some or all their ICUs. Full-time intensivists worked a median of 168 days (range 42-192 d) in the ICU (168 shifts = 24 7-d wk). The median shift duration was 12 hours (range, 7-14 hr), and the median number of consecutive shifts allowed was 7 hours (range 7-14 hr). More than half of critical care organizations reported having burnout prevention programs targeted to ICU physicians, advanced practice providers, and nurses. CONCLUSIONS: The variability of current approaches suggests that systematic comparative analyses could identify best organizational practices. The research agenda for the study of critical care organizations should include studies that provide insights regarding the effects of the integrative structure of critical care organizations on outcomes at the levels of our patients, our workforce, our work practices, and sustainability.


Assuntos
Esgotamento Profissional/epidemiologia , Cuidados Críticos/estatística & dados numéricos , Mão de Obra em Saúde/estatística & dados numéricos , Carga de Trabalho/estatística & dados numéricos , Adulto , Pesquisa Biomédica/métodos , Esgotamento Profissional/etiologia , Canadá/epidemiologia , Cuidados Críticos/organização & administração , Estado Terminal/epidemiologia , Mão de Obra em Saúde/organização & administração , Humanos , Pessoa de Meia-Idade , Inquéritos e Questionários , Estados Unidos/epidemiologia , Carga de Trabalho/psicologia
15.
Allergy ; 75(2): 357-369, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31385613

RESUMO

BACKGROUND: A new approach targeting aeroallergen sensing in the early events of mucosal immunity could have greater benefit. The CSF1-CSF1R pathway has a critical role in trafficking allergens to regional lymph nodes through activating dendritic cells. Intervention in this pathway could prevent allergen sensitization and subsequent Th2 allergic inflammation. OBJECTIVE: To examine the therapeutic effectiveness of CSF1 and CSF1R inhibition for blocking the dendritic cell function of sensing aeroallergens. METHODS: We adopted a model of chronic asthma induced by a panel of three naturally occurring allergens and novel delivery system of CSF1R inhibitor encapsulated nanoprobe. RESULTS: Selective depletion of CSF1 in airway epithelial cells abolished the production of allergen-reactive IgE, resulting in prevention of new asthma development as well as reversal of established allergic lung inflammation. CDPL-GW nanoprobe containing GW2580, a selective CSF1R inhibitor, showed favorable pharmacokinetics for inhalational treatment and intranasal insufflation delivery of CDPL-GW nanoprobe ameliorated asthma pathologies including allergen-specific serum IgE production, allergic lung and airway inflammation and airway hyper-responsiveness (AHR) with minimal pulmonary adverse reaction. CONCLUSION: The inhibition of the CSF1-CSF1R signaling pathway effectively suppresses sensitization to aeroallergens and consequent allergic lung inflammation in a murine model of chronic asthma. CSF1R inhibition is a promising new target for the treatment of allergic asthma.


Assuntos
Anisóis/administração & dosagem , Anisóis/farmacologia , Asma/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Fator Estimulador de Colônias de Macrófagos/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Alérgenos/imunologia , Alérgenos/farmacologia , Animais , Asma/induzido quimicamente , Modelos Animais de Doenças , Feminino , Imunoglobulina E/biossíntese , Fator Estimulador de Colônias de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nanoestruturas/administração & dosagem , Compostos de Amônio Quaternário/administração & dosagem , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Ácidos Sulfônicos/administração & dosagem , Resultado do Tratamento
16.
J Immunol ; 201(8): 2414-2426, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30201810

RESUMO

Ischemic tissue damage activates hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM)-generating myeloid cells, and persistent HSPC activity may drive chronic inflammation and impair tissue recovery. Although increased reactive oxygen species in the BM regulate HSPC functions, their roles in myelopoiesis of activated HSPCs and subsequent tissue recovery during ischemic damage are not well understood. In this paper, we report that deletion of Nox2 NADPH oxidase in mice results in persistent elevations in BM HSPC activity and levels of inflammatory monocytes/macrophages in BM and ischemic tissue in a model of hindlimb ischemia. Ischemic tissue damage induces oxidants in BM such as elevations of hydrogen peroxide and oxidized phospholipids, which activate redox-sensitive Lyn kinase in a Nox2-dependent manner. Moreover, during tissue recovery after ischemic injury, this Nox2-ROS-Lyn kinase axis is induced by Nox2 in neutrophils that home to the BM, which inhibits HSPC activity and inflammatory monocyte generation and promotes tissue regeneration after ischemic damage. Thus, oxidant signaling in the BM mediated by Nox2 in neutrophils regulates myelopoiesis of HSPCs to promote regeneration of damaged tissue.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Membro Posterior/patologia , Isquemia/imunologia , NADPH Oxidase 2/metabolismo , Neutrófilos/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielopoese , NADPH Oxidase 2/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Transdução de Sinais , Quinases da Família src/metabolismo
17.
Crit Care Med ; 47(4): 550-557, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30688716

RESUMO

OBJECTIVES: To assess-by literature review and expert consensus-workforce, workload, and burnout considerations among intensivists and advanced practice providers. DESIGN: Data were synthesized from monthly expert consensus and literature review. SETTING: Workforce and Workload section workgroup of the Academic Leaders in Critical Care Medicine Task Force. MEASUREMENTS AND MAIN RESULTS: Multidisciplinary care teams led by intensivists are an essential component of critical care delivery. Advanced practice providers (nurse practitioners and physician assistants) are progressively being integrated into ICU practice models. The ever-increasing number of patients with complex, life-threatening diseases, concentration of ICU beds in few centralized hospitals, expansion of specialty ICU services, and desire for 24/7 availability have contributed to growing intensivist staffing concerns. Such staffing challenges may negatively impact practitioner wellness, team perception of care quality, time available for teaching, and length of stay when the patient to intensivist ratio is greater than or equal to 15. Enhanced team communication and reduction of practice variation are important factors for improved patient outcomes. A diverse workforce adds value and enrichment to the overall work environment. Formal succession planning for ICU leaders is crucial to the success of critical care organizations. Implementation of a continuous 24/7 ICU coverage care model in high-acuity, high-volume centers should be based on patient-centered outcomes. High levels of burnout syndrome are common among intensivists. Prospective analyses of interventions to decrease burnout within the ICU setting are limited. However, organizational interventions are felt to be more effective than those directed at individuals. CONCLUSIONS: Critical care workforce and staffing models are myriad and based on several factors including local culture and resources, ICU organization, and strategies to reduce burden on the ICU provider workforce. Prospective studies to assess and avoid the burnout syndrome among intensivists and advanced practice providers are needed.


Assuntos
Atitude do Pessoal de Saúde , Esgotamento Profissional/psicologia , Cuidados Críticos/psicologia , Admissão e Escalonamento de Pessoal/organização & administração , Humanos , Unidades de Terapia Intensiva/organização & administração , Padrões de Prática Médica , Recursos Humanos/organização & administração , Carga de Trabalho
18.
Allergy ; 74(3): 535-548, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30288751

RESUMO

BACKGROUND: The pathogenesis of asthma and airway obstruction is the result of an abnormal response to different environmental exposures. The scientific premise of our study was based on the finding that FoxO1 expression is increased in lung macrophages of mice after allergen exposure and human asthmatic patients. Macrophages are capable of switching from one functional phenotype to another, and it is important to understand the mechanisms involved in the transformation of macrophages and how their cellular function affects the peribronchial stromal microenvironment. METHODS: We employed a murine asthma model, in which mice were treated by intranasal insufflation with allergens for 2-8 weeks. We used both a pharmacologic approach using a highly specific FoxO1 inhibitor and genetic approaches using FoxO1 knockout mice (FoxO1fl/fl LysMcre). Cytokine level in biological fluids was measured by ELISA and the expression of encoding molecules by NanoString assay and qRT-PCR. RESULTS: We show that the levels of FoxO1 gene are significantly elevated in the airway macrophages of patients with mild asthma in response to subsegmental bronchial allergen challenge. Transcription factor FoxO1 regulates a pro-asthmatic phenotype of lung macrophages that is involved in the development and progression of chronic allergic airway disease. We have shown that inhibition of FoxO1 induced phenotypic conversion of lung macrophages and downregulates pro-asthmatic and pro-fibrotic gene expression by macrophages, which contribute to airway inflammation and airway remodeling in allergic asthma. CONCLUSION: Targeting FoxO1 with its downstream regulator IRF4 is a novel therapeutic target for controlling allergic inflammation and potentially reversing fibrotic airway remodeling.


Assuntos
Asma/etiologia , Asma/metabolismo , Proteína Forkhead Box O1/genética , Regulação Neoplásica da Expressão Gênica , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Transferência Adotiva , Alérgenos/imunologia , Animais , Asma/diagnóstico , Asma/terapia , Testes de Provocação Brônquica , Broncoscopia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Proteína Forkhead Box O1/metabolismo , Humanos , Camundongos , Células Th2/imunologia , Células Th2/metabolismo
19.
J Immunol ; 198(11): 4470-4480, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455433

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a highly lethal pathological process that is characterized by inflammation, fibroblast accumulation, and excessive collagen deposition. Although AKT2-mediated signaling pathways modulate inflammatory responses, their role in IPF has not been defined. We report that AKT2 deficiency (Akt2-/-) protected against bleomycin-induced pulmonary fibrosis and inflammation. Adoptive transfer of wild-type macrophages or administration of IL-13 to Akt2-/- mice could restore pulmonary fibrosis. In response to IL-33 treatment, Akt2-/- macrophages displayed decreased production of IL-13 and TGF-ß1 and attenuated phosphorylation of FoxO3a compared with Akt2+/+ macrophages. Furthermore, the expression of IL-13 was increased by small interfering RNA knockdown of FoxO3a or in FoxO3a-deficient macrophages. By evaluating lung sections from pulmonary fibrosis patients, we found that the phosphorylation of AKT2 and FoxO3a was remarkably upregulated. Collectively, these results indicate that AKT2 modulates pulmonary fibrosis through inducing TGF-ß1 and IL-13 production by macrophages, and inhibition of AKT2 may be a potential strategy for treating IPF.


Assuntos
Ativação de Macrófagos , Pneumonia/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/imunologia , Transferência Adotiva , Animais , Bleomicina/administração & dosagem , Bleomicina/efeitos adversos , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-13/administração & dosagem , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-33/imunologia , Interleucina-33/farmacologia , Macrófagos/imunologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/imunologia
20.
Am J Respir Cell Mol Biol ; 58(6): 756-766, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29268030

RESUMO

The complement system plays a critical role in immune responses against pathogens. However, its identity and regulation in the lung are not fully understood. This study aimed to explore the role of tripartite motif protein (TRIM) 72 in regulating complement receptor (CR) of the Ig superfamily (CRIg) in alveolar macrophage (AM) and innate immunity of the lung. Imaging, absorbance quantification, and flow cytometry were used to evaluate in vitro and in vivo AM phagocytosis with normal, or altered, TRIM72 expression. Pulldown, coimmunoprecipitation, and gradient binding assays were applied to examine TRIM72 and CRIg interaction. A pneumonia model was established by intratracheal injection of Pseudomonas aeruginosa. Mortality, lung bacterial burden, and cytokine levels in BAL fluid and lung tissues were examined. Our data show that TRIM72 inhibited CR-mediated phagocytosis, and release of TRIM72 inhibition led to increased AM phagocytosis. Biochemical assays identified CRIg as a binding partner of TRIM72, and TRIM72 inhibited formation of the CRIg-phagosome. Genetic ablation of TRIM72 led to improved pathogen clearance, reduced cytokine storm, and improved survival in murine models of severe pneumonia, specificity of which was confirmed by adoptive transfer of wild-type or TRIM72KO AMs to AM-depleted TRIM72KO mice. TRIM72 overexpression promoted bacteria-induced NF-κB activation in murine alveolar macrophage cells. Our data revealed a quiescent, noninflammatory bacterial clearance mechanism in the lung via AM CRIg, which is suppressed by TRIM72. In vivo data suggest that targeted suppression of TRIM72 in AM may be an effective measure to treat fatal pulmonary bacterial infections.


Assuntos
Proteínas de Transporte/metabolismo , Imunidade Inata/fisiologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Receptores de Complemento 3b/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Membrana , Camundongos Knockout , NF-kappa B/metabolismo , Fagocitose/fisiologia , Fagossomos/metabolismo , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/patologia , Proteínas com Motivo Tripartido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA