Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2401315, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747008

RESUMO

Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm-2 (9.87, 10.88, and 11.15 F cm-2) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm-2 at 0-2.0 V, a large energy density of 0.84 mWh cm-2 at a power density of 10.00 mW cm-2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.

2.
Small ; 19(38): e2302253, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37211692

RESUMO

The electrochemical carbon dioxide reduction reaction (E-CO2 RR) to formate is a promising strategy for mitigating greenhouse gas emissions and addressing the global energy crisis. Developing low-cost and environmentally friendly electrocatalysts with high selectivity and industrial current densities for formate production is an ideal but challenging goal in the field of electrocatalysis. Herein, novel titanium-doped bismuth nanosheets (TiBi NSs) with enhanced E-CO2 RR performance are synthesized through one-step electrochemical reduction of bismuth titanate (Bi4 Ti3 O12 ). We comprehensively evaluated TiBi NSs using in situ Raman spectra, finite element method, and density functional theory. The results indicate that the ultrathin nanosheet structure of TiBi NSs can accelerate mass transfer, while the electron-rich properties can accelerate the production of *CO2 - and enhance the adsorption strength of *OCHO intermediate. The TiBi NSs deliver a high formate Faradaic efficiency (FEformate ) of 96.3% and a formate production rate of 4032 µmol h-1  cm-2 at -1.01 V versus RHE. An ultra-high current density of -338.3 mA cm-2 is achieved at -1.25 versus RHE, and simultaneously FEformate still reaches more than 90%. Furthermore, the rechargeable Zn-CO2 battery using TiBi NSs as a cathode catalyst achieves a maximum power density of 1.05 mW cm-2 and excellent charging/discharging stability of 27 h.

3.
Small ; 18(12): e2106773, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064640

RESUMO

The development of efficient and stable Pt-based catalysts is significant but challenging for fuel cells. Herein, Sn and Co elements are introduced into Pt to form PtCo-PtSn/C heterostructure for enhancing the oxygen reduction reaction (ORR). Electrochemical results indicate that it has remarkable ORR intrinsic activity with a high mass activity (1,158 mA mg-1 Pt) at 0.9 V in HClO4 solution, which is 2.18-, 6.81-, and 9.98-fold higher than that of PtCo/C, PtSn/C, and Pt/C. More importantly, the catalytic activity attenuation for PtCo-PtSn/C is only 27.4% after 30 000 potential cycles, showing high stability. Furthermore, theoretical calculations reveal that the enhancement is attributed to charge transfer and the unique structure of PtCo-PtSn/C heterostructure, which regulate the d-band center of Pt and prevent non-noble metals from further dissolution. This work thus opens a way to design and prepare highly efficient Pt-based alloy catalysts for proton exchange membrane fuel cells.

4.
Chemistry ; 28(66): e202202105, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35998025

RESUMO

Herein, the synthesis of a new type of catalyst, SBA-M (Schiff complex of different metal types grafted on SBA-15) based on a quaternization reaction, is described. Various amounts of ionic liquid were grafted into the pore channels of SBA-15 using the post-grafting method, which allowed the ionic liquid to be grafted into the pore channels restrictively. Notably, over six cycles, SBA-Mn (0.2) has been shown to maintain its catalytic activity and stability. In addition, a reaction mechanism for the cycloaddition of CO2 with epoxides based on density-functional theory is proposed. The cycloaddition reaction of CO2 and epoxides is an efficient way of carbon fixation. It is demonstrated that the metal coordinated with the oxygen atom of the epoxides and that a halogen attacked the carbon of epoxides. Moreover, theoretical calculations and synthesis strategy provide a new approach for CO2 conversion.

5.
J Colloid Interface Sci ; 646: 361-369, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201464

RESUMO

Developing efficient and robust non-precious-metal-based hydrogen evolution reaction (HER) catalysts is highly desirable but remains quite challenging for alkaline freshwater/seawater electrolysis. In the present study, we report a theory-guided design and synthesis of a nickel foam (NF) supported N-doped carbon-coated (NC) nickel (Ni)/chromium nitride (CrN) nanosheets (NC@CrN/Ni) as a highly active and durable electrocatalyst. Our theoretical calculation firstly reveals that CrN/Ni heterostructure can greatly promote the H2O dissociation via hydrogen-bond induced effect, and the N site can be optimized by hetero coupling to achieve a facile hydrogen associative desorption, thereby significantly boosting alkaline HER. Guided by theoretical calculation, we prepared the nickel-based metal-organic framework as a precursor, and introduced the Cr by the subsequent hydrothermal treatment, finally obtained the target catalyst by ammonia pyrolysis. Such a simple process ensures the exposure of abundant accessible active sites. Consequently, the as-prepared NC@CrN/Ni catalyst exhibits outstanding performance in both alkaline freshwater and seawater, with the respective overpotential of only 24 and 28 mV at a current density of 10 mA cm-2, respectively. More impressively, the catalyst also possesses superior durability in the constant-current test of 50 h at the different current densities of 10, 100, and 1000 mA cm-2.

6.
Adv Sci (Weinh) ; 9(4): e2103715, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34806327

RESUMO

Constructing an efficient photoelectron transfer channel to promote the charge carrier separation is a great challenge for enhancing photocatalytic hydrogen evolution from water. In this work, an ultrathin 2D/2D Ti3 C2 Tx /ZnIn2 S4 heterostructure is rationally designed by coupling the ultrathin ZnIn2 S4 with few-layered Ti3 C2 Tx via the electrostatic self-assembly strategy. The 2D/2D Ti3 C2 Tx /ZnIn2 S4 heterostructure possesses larger contact area and strong electronic interaction to promote the charge carrier transfer at the interface, and the sulfur vacancy on the ZnIn2 S4 acting as the electron trap further enhances the separation of the photoinduced electrons and holes. As a consequence, the optimal 2D/2D Ti3 C2 Tx /ZnIn2 S4 composite exhibits a high photocatalytic hydrogen evolution rate of 148.4 µmol h-1 , which is 3.6 times and 9.2 times higher than that of ZnIn2 S4 nanosheet and flower-like ZnIn2 S4 , respectively. Moreover, the stability of the ZnIn2 S4 is significantly improved after coupling with the few-layered Ti3 C2 Tx . The characterizations and density functional theory calculation demonstrate that the synergistic effect of the sulfur vacancy and Ti3 C2 Tx cocatalyst can greatly promote the electrons transfer from ZnIn2 S4 to Ti3 C2 Tx and the separation of photogenerated charge carriers, thus enhancing the photocatalytic hydrogen evolution from water.

7.
ACS Appl Mater Interfaces ; 14(16): 18816-18824, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417130

RESUMO

Developing a high-performance electrocatalyst for hydrogen evolution reaction (HER) requires a comprehensive consideration of the three key factors, that is, intrinsic activity, electric conductivity, and active site number. Herein, we report the facile synthesis of a self-supported Ni2P/WO2.83 heterointerface microsphere as a highly active and low-cost catalyst for alkaline HER, which has simultaneously addressed these key issues by a joint application of heterointerface construction and defect and architecture engineering strategies. Our density functional theory calculations revealed Ni2P and WO2.83 optimized by the interface coupling effect work in concert to improve the intrinsic activity of the catalyst. Importantly, the metalloid Ni2P in an intimate combination with the oxygen-defect-rich WO2.83 species endowed the electrocatalyst with high conductivity. Furthermore, the Ni2P/WO2.83 electrocatalyst presented a superhydrophilic nanostructure, ensuring abundant active sites and their accessibility. Benefiting from these attributes, the obtained Ni2P/WO2.83 heterointerface electrocatalyst exhibited excellent activity along with favorable stability for alkaline HER, especially at high current density, surpassing the most reported non-precious catalysts.

8.
Nanoscale ; 13(25): 11150-11160, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34132731

RESUMO

Layered double hydroxides (LDHs) are one of the most effective electrocatalysts. However, it is still necessary to improve the lower conductivity and limited active sites of LDHs to enhance their catalytic performance. Targeted generation of vacancies on the catalyst's surface by the incorporation of metal nanoparticles has been explored as a promising strategy to synthesize highly efficient electrocatalysts. Herein, we designed and prepared novel three-dimensional (3D) hetero-electrocatalysts of NiCo-layered double hydroxide nanosheets incorporated with silver nanoclusters on a Ni foam (labeled as Ag@NiCo-LDH/NF) by a one-pot hydrothermal method. We also conducted experimental and theoretical investigations to demonstrate the high electrocatalytic performance of the Ag@NiCo-LDH/NF hetero-electrocatalysts for OERs and the underlying mechanism. The resulting hetero-electrocatalysts show a low overpotential of 262 mV at a current density of 10 mA cm-2, and even exhibit low overpotentials of 300 mV at a high current density of 50 mA cm-2 and 324 mV at 100 mA cm-2, and a small Tafel slope of 41 mV dec-1 as well as excellent durability for 80 h for OERs in 1.0 M KOH. The excellent performance is attributed to the synergistic effects between Ag nanoclusters and LDHs. The population engineering effect of silver not only helps to modulate the intrinsic properties of active sites but also induces the generation of abundant oxygen vacancies on the surface; finally, it facilitates the rate-determining step of OERs (ΔG3 (O* → OOH*) = 1.31 eV) to gain high performance. The one-pot silver incorporating strategy and the resulting high performance pave new ways for the further development of highly efficient electrocatalysts for OERs.

9.
ACS Appl Mater Interfaces ; 10(47): 40509-40522, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30372026

RESUMO

A series of samples with the precursor's molar ratio of {KMn8O16}/{CuFe2O4} = 0, 0.008, 0.010, 0.016, and 0.020 were successfully synthesized for selective catalytic reduction of NO by CO. The physicochemical properties of all samples were studied in detail by combining the means of X-ray photoelectron spectroscopy, H2-temperature-programmed reduction, scanning electron microscopy mapping, X-ray diffraction (XRD), N2 physisorption (Brunauer-Emmett-Teller), NO + CO model reaction, and in situ Fourier transform infrared spectroscopy techniques. The results show that three phases of γ-Fe2O3, CuFe2O4, and CuO, which have strong synergistic interaction, coexist in this catalyst system, and different phases play a leading role in different temperature ranges. Mn species are highly dispersed in the three-phase coexisting system in the form of Mn2+, Mn3+, and Mn4+. Because of the strong interaction between Mn2+ and Fe species, a small amount of Cu2+ precipitates from CuFe2O4 and grows along the CuO(110) plane, which has better catalytic performance. Mn3+ can inhibit the conversion of γ-Fe2O3 to α-Fe2O3 at high temperature and then increases the high-temperature activity. The synergistic effect between Mn4+ and the surfaces of three phases generates active oxygen species Cu2+-O-Mn4+ and Mn4+-O-Fe3+, which can be more easily reduced to some synergistic oxygen vacancies during the reaction. Furthermore, the formed synergistic oxygen vacancies can promote the dissociation of NO and are also propitious to the transfer of oxygen species. All of these factors make the appropriate manganese-modified three-phase coexisting system have better catalytic activity than the manganese-free catalyst, making NO conversion rate reach 100% at around 250 °C and maintain to 1000 °C. Combining comprehensive analysis of various characterization results and in situ infrared as well as XRD results in the equilibrium state, a new possible NO + CO model reaction mechanism was temporarily proposed to further understand the catalytic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA