Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499623

RESUMO

Rare subpopulations of cancer stem cells (CSCs) have the ability to self-renew and are the primary driving force behind cancer metastatic dissemination and the preeminent hurdle to cancer treatment. As opposed to differentiated, non-malignant tumor offspring, CSCs have sophisticated metabolic patterns that, depending on the kind of cancer, rely mostly on the oxidation of major fuel substrates such as glucose, glutamine, and fatty acids for survival. Glutaminolysis is a series of metabolic reactions that convert glutamine to glutamate and, eventually, α-ketoglutarate, an intermediate in the tricarboxylic acid (TCA) cycle that provides biosynthetic building blocks. These building blocks are mostly utilized in the synthesis of macromolecules and antioxidants for redox homeostasis. A recent study revealed the cellular and molecular interconnections between glutamine and cancer stemness in the cell. Researchers have increasingly focused on glutamine catabolism in their attempt to discover an effective therapy for cancer stem cells. Targeting catalytic enzymes in glutaminolysis, such as glutaminase (GLS), is achievable with small molecule inhibitors, some of which are in early-phase clinical trials and have promising safety profiles. This review summarizes the current findings in glutaminolysis of CSCs and focuses on novel cancer therapies that target glutaminolysis in CSCs.


Assuntos
Glutamina , Neoplasias , Humanos , Glutamina/metabolismo , Glutaminase/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ácido Glutâmico , Glucose/metabolismo
2.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315232

RESUMO

Biomedical imaging modalities in clinical practice have revolutionized oncology for several decades. State-of-the-art biomedical techniques allow visualizing both normal physiological and pathological architectures of the human body. The use of nanoparticles (NP) as contrast agents enabled visualization of refined contrast images with superior resolution, which assists clinicians in more accurate diagnoses and in planning appropriate therapy. These desirable features are due to the ability of NPs to carry high payloads (contrast agents or drugs), increased in vivo half-life, and disease-specific accumulation. We review the various NP-based interventions for treatments of deep-seated tumors, involving "seeing better" to precisely visualize early diagnosis and "going deeper" to activate selective therapeutics in situ.


Assuntos
Neoplasias/diagnóstico , Nanomedicina Teranóstica/métodos , Animais , Humanos , Neoplasias/terapia
3.
Molecules ; 24(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709030

RESUMO

Enthusiasm for photodynamic therapy (PDT) as a potential therapeutic intervention for cancer has increased exponentially in recent decades. Photodynamic therapy constitutes a clinically approved, minimally invasive treatment modality that uses a photosensitizer (light absorbing molecule) and light to kill cancer cells. The principle of PDT is, when irradiated with a light of a suitable wavelength, a photosensitizer absorbs the light energy and generates cytotoxic free radicals through various mechanisms. The overall efficiency of PDT depends on characteristics of activation light and in-situ dosimetry, including the choice of photosensitizer molecule, wavelength of the light, and tumor location and microenvironment, for instance, the use of two-photon laser or an X-ray irradiator as the light source increases tissue-penetration depth, enabling it to achieve deep PDT. In this mini-review, we discuss the various designs and strategies for single, two-photon, and X-ray-mediated PDT for improved clinical outcomes.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Composição de Medicamentos , Humanos , Luz , Nanopartículas/química , Neoplasias/patologia , Neoplasias/terapia , Fotoquimioterapia/métodos , Fótons , Fármacos Fotossensibilizantes/química , Raios X
4.
Molecules ; 21(8)2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27472309

RESUMO

Recombinant Chlamydomonas reinhardtii chlorophyllase 1 (CrCLH1) that could catalyze chlorophyll hydrolysis to chlorophyllide and phytol in vitro was successfully expressed in Escherichia coli. The recombinant CrCLH1 was immobilized through covalent binding with a cubic (3-aminopropyl) triethoxysilane (APTES) coating on magnetic iron oxide nanoparticles (MIONPs), which led to markedly improved enzyme performance and decreased biocatalyst costs for potential industrial application. The immobilized enzyme exhibited a high immobilization yield (98.99 ± 0.91 mg/g of gel) and a chlorophyllase assay confirmed that the immobilized recombinant CrCLH1 retained enzymatic activity (722.3 ± 50.3 U/g of gel). Biochemical analysis of the immobilized enzyme, compared with the free enzyme, showed higher optimal pH and pH stability for chlorophyll-a hydrolysis in an acidic environment (pH 3-5). In addition, compared with the free enzyme, the immobilized enzyme showed higher activity in chlorophyll-a hydrolysis in a high temperature environment (50-60 °C). Moreover, the immobilized enzyme retained a residual activity of more than 64% of its initial enzyme activity after 14 cycles in a repeated-batch operation. Therefore, APTES-coated MIONP-immobilized recombinant CrCLH1 can be repeatedly used to lower costs and is potentially useful for the industrial production of chlorophyll derivatives.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Chlamydomonas reinhardtii/enzimologia , Clorofila/química , Compostos Férricos/química , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Biocatálise , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Fenômenos Eletromagnéticos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Nanopartículas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-39046148

RESUMO

Here we demonstrate that cancer metastasis could be modulated by the judicious tuning of physical parameters such as photothermal temperature in nanoparticle-mediated photothermal therapy (PTT). This is supported by theranostic nanosystem design and characterization, in vitro and in vivo analyses, and transcriptome-based gene profiling. In this work, the highly efficient near-infrared II (NIR-II) photoacoustic image (PA)-guided PTT are selectively activated using our developed matrix metalloproteinase (MMP)-triggered in situ assembly of gold nanodandelions (GNDs@gelatin). Unlike other "always-on" NIR PTT agents lacking specific bioactivation and suffering from the intrinsic nonspecific pseudosignals and treatment-related side effects such as metastasis, our GNDs@gelatin possesses important advantages while deployed in cancer PTT that include the following: (1) The theranostic effects could be "turned on" only after specific MMP-2/-9 activity and with acidity in the tumor microenvironment. (2) The quantitative PA diagnosis allows for precise PTT planning for better cancer treatment. (3) GNDs@gelatin could noninvasively quantify MMP activity and efficiently harness NIR-I (808 nm) and NIR-II (1064 nm) energies for tumor ablation. (4) The multibranched nanostructures reabsorb scattered laser photons, thus enhancing the surface plasmons for the pronounced photothermal conversion of aggregated GNDs@gelatin in situ. (5) It is noteworthy that in situ tumor eradication at higher PTT temperature (>55 °C) mediated by GNDs@gelatin could induce subsequent metastasis, which could be otherwise abolished at lower PTT temperatures (50 °C > T > 43 °C). (6) Furthermore, the gene profiling using transcriptome-based microarray including GO and KEGG analyses revealed that 315 differentially expressed genes were identified in higher PTT temperature treated tumors compared with lower PTT temperature ones. These were enriched into some well-known cancer-related pathways, such as cell migration pathway, signal transductions, cell proliferation, wound healing, PPAR signaling, and metabolic pathways. These observations suggest a new perspective of "moderate-is-better" in nanoparticle-mediated PTT for maximizing its therapeutic/prognosis benefits and translational potential with metastasis inhibition.

6.
Int J Nanomedicine ; 18: 4253-4274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534057

RESUMO

Background: Cancer multidrug resistance (MDR) is an important factor that severely affects the chemotherapeutic efficacy. Among various methods to bypass MDR, usage of cytokines, such as tumor necrosis factor alpha (TNFα) is attractive, which exerts antitumor effects of immunotherapeutic response and apoptotic/proinflammatory pathways. Nevertheless, the challenges remain how to implement targeted delivery of TNFα to reduce toxicity and manifest the involved signaling mechanism that subdues MDR. Methods: We synthesized a multifunctional nanosytem, in which TNFα covalently bound to doxorubicin (Dox)-loaded pH-responsive mesoporous silica nanoparticles (MSN) through bi-functional polyethylene glycol (TNFα-PEG-MSN-Hydrazone-Dox) as a robust design to overcome MDR. Results: The salient features of this nanoplatform are: 1) by judicious tailoring of TNFα concentration conjugated on MSN, we observed it could lead to a contrary effect of either proliferation or suppression of tumor growth; 2) the MSN-TNFα at higher concentration serves multiple functions, besides tumor targeting and inducer of apoptosis through extrinsic pathway, it inhibits the expression level of p-glycoprotein (P-gp), a cell membrane protein that functions as a drug efflux pump; 3) the enormous surface area of MSN provides for TNFα functionalization, and the nanochannels accommodate chemotherapeutics, Dox; 4) targeted intracellular release of Dox through the pH-dependent cleavage of hydrazone bonds induces apoptosis by the specific intrinsic pathway; and 5) TNFα-PEG-MSN-Hydrazone-Dox (MSN-Dox-TNFα) could infiltrate deep into the 3D spheroid tumor model through disintegration of tight junction proteins. When administered intratumorally in a Dox-resistant mouse tumor model, MSN-Dox-TNFα exhibited a synergistic therapeutic effect through the collective performances of TNFα and Dox. Conclusion: We hereby develop and demonstrate a multifunctional MSN-Dox-TNFα system with concentration-tailored TNFα that can abrogate the drug resistance mechanism, and significantly inhibit the tumor growth through both intrinsic and extrinsic apoptosis pathways, thus making it a highly potential nanomedicine translated in the treatment of MDR tumors.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Citocinas , Fator de Necrose Tumoral alfa , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Doxorrubicina , Apoptose , Resistência a Múltiplos Medicamentos , Nanopartículas/química , Proliferação de Células , Hidrazonas/farmacologia , Hidrazonas/uso terapêutico , Dióxido de Silício/química , Resistencia a Medicamentos Antineoplásicos , Porosidade
7.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985905

RESUMO

Radiotherapy is one of the most common therapeutic regimens for cancer treatment. Over the past decade, proton therapy (PT) has emerged as an advanced type of radiotherapy (RT) that uses proton beams instead of conventional photon RT. Both PT and carbon-ion beam therapy (CIBT) exhibit excellent therapeutic results because of the physical characteristics of the resulting Bragg peaks, which has been exploited for cancer treatment in medical centers worldwide. Although particle therapies show significant advantages to photon RT by minimizing the radiation damage to normal tissue after the tumors, they still cause damage to normal tissue before the tumor. Since the physical mechanisms are different from particle therapy and photon RT, efforts have been made to ameliorate these effects by combining nanomaterials and particle therapies to improve tumor targeting by concentrating the radiation effects. Metallic nanoparticles (MNPs) exhibit many unique properties, such as strong X-ray absorption cross-sections and catalytic activity, and they are considered nano-radioenhancers (NREs) for RT. In this review, we systematically summarize the putative mechanisms involved in NRE-induced radioenhancement in particle therapy and the experimental results in in vitro and in vivo models. We also discuss the potential of translating preclinical metal-based NP-enhanced particle therapy studies into clinical practice using examples of several metal-based NREs, such as SPION, Abraxane, AGuIX, and NBTXR3. Furthermore, the future challenges and development of NREs for PT are presented for clinical translation. Finally, we propose a roadmap to pursue future studies to strengthen the interplay of particle therapy and nanomedicine.

8.
Nanomaterials (Basel) ; 13(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299694

RESUMO

Although radiotherapy is one of the most important curative treatments for cancer, its clinical application is associated with undesired therapeutic effects on normal or healthy tissues. The use of targeted agents that can simultaneously achieve therapeutic and imaging functions could constitute a potential solution. Herein, we developed 2-deoxy-d-glucose (2DG)-labeled poly(ethylene glycol) (PEG) gold nanodots (2DG-PEG-AuD) as a tumor-targeted computed tomography (CT) contrast agent and radiosensitizer. The key advantages of the design are its biocompatibility and targeted AuD with excellent sensitivity in tumor detection via avid glucose metabolism. As a consequence, CT imaging with enhanced sensitivity and remarkable radiotherapeutic efficacy could be attained. Our synthesized AuD displayed linear enhancement of CT contrast as a function of its concentration. In addition, 2DG-PEG-AuD successfully demonstrated significant augmentation of CT contrast in both in vitro cell studies and in vivo tumor-bearing mouse models. In tumor-bearing mice, 2DG-PEG-AuD showed excellent radiosensitizing functions after intravenous injection. Results from this work indicate that 2DG-PEG-AuD could greatly potentiate theranostic capabilities by providing high-resolution anatomical and functional images in a single CT scan and therapeutic capability.

9.
Cardiovasc Diabetol ; 11: 66, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22694778

RESUMO

BACKGROUND: It has been suggested that the antioxidant properties of olmesartan (OLM), an angiotensin II type 1 receptor (AT(1)R) blocker, contribute to renal protection rather than blood pressure lowering effects despite the fact that causal relationships between hypertension and renal artery disease exist. This study aimed to examine the hypothesis whether the antioxidative activities of OLM were correlated to arterial stiffness, reactive oxygen species and advanced glycation end products (AGEs) formation in rats with chronic renal failure (CRF). METHODS: CRF rats were induced by 5/6 nephrectomy and randomly assigned to an OLM (10 mg/day) group or a control group. Hemodynamic states, oxidative stress, renal function and AGEs were measured after 8 weeks of OLM treatment. RESULTS: All the hemodynamic derangements associated with renal and cardiovascular dysfunctions were abrogated in CRF rats receiving OLM. Decreased cardiac output was normalized compared to control (p <0.05). Mean aortic pressure, total peripheral resistance and left ventricular weight/body weight ratio were reduced by 21.6% (p <0.05), 28.2% (p <0.05) and 27.2% ((p <0.05). OLM also showed beneficial effects on the oscillatory components of the ventricular after-load, including 39% reduction in aortic characteristic impedance (p < 0.05), 75.3% increase in aortic compliance (p <0.05) and 50.3% increase in wave transit time (p < 0.05). These results implied that OLM attenuated the increased systolic load of the left ventricle and prevented cardiac hypertrophy in CRF rats. Improved renal function was also reflected by increases in the clearances of BUN (28.7%) and serum creatinine (SCr, 38.8%). In addition to these functional improvements, OLM specifically reduced the levels of malondialdehyde (MDA) equivalents in aorta and serum by 14.3% and 25.1%, as well as the amount of AGEs in the aortic wall by 32% (p < 0.05) of CRF rats. CONCLUSION: OLM treatment could ameliorate arterial stiffness in CRF rats with concomitant inhibition of MDA and AGEs levels through the reduction of oxidative stress in aortic wall.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Imidazóis/farmacologia , Falência Renal Crônica/tratamento farmacológico , Tetrazóis/farmacologia , Rigidez Vascular/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Modelos Animais de Doenças , Produtos Finais de Glicação Avançada/metabolismo , Hemodinâmica/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/fisiopatologia , Masculino , Malondialdeído/metabolismo , Nefrectomia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-35206122

RESUMO

Based on Construal Level Theory (CLT), the youth and older adults have different psychological distances towards dementia that may lead to different dementia knowledge and attitudes. A cross-sectional survey among 239 youth and 62 older adults using a two-step sampling approach in Macao aimed to examine the hypothesis. Results showed older adults had a higher score of dementia knowledge (F(1,299) = 45.692, p <0.001) but a lower score of dementia attitudes (F(1,299) = 161.887, p <0.001) compared to the youth. Age group explained the majority of the variances in the hierarchical multiple regressions for dementia knowledge (R2 = 0.178, F = 9.059, p < 0.001) and for dementia attitudes (R2 = 0.399, F = 24.233, p < 0.001), which are ß = 0.47 and -0.56, respectively. Thus, the hypothesis was supported and revealed an interesting pattern of dementia knowledge and attitudes among the youth and older adults. From the CLT perspective, the study implies that reducing and bridging the psychological distance of dementia would probably be an effective strategy to increase dementia awareness among young people, and intergenerational programs may be a good option to increase community acceptance and support for people with dementia.


Assuntos
Demência , Conhecimentos, Atitudes e Prática em Saúde , Adolescente , Idoso , Estudos Transversais , Demência/psicologia , Humanos , Macau , Resolução de Problemas , Inquéritos e Questionários
11.
Am J Alzheimers Dis Other Demen ; 37: 15333175221139172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36378076

RESUMO

BACKGROUND: Dementia-friendly community has been promoted in Macao since 2016. There is no study investigating the understanding of nor attitudes towards dementia among public contact staff in Macao. This study aimed to (i) understand the level of knowledge of dementia, (ii) examine the attitudes towards people living with dementia, and (iii) explore the associated factors of the willingness to help people with dementia symptoms among police officers, bank officers, bus drivers, and building superintendents. METHODS: A cross-sectional survey was conducted between January and May 2019 using a structured questionnaire. RESULTS: A total of 351 valid questionnaires were received. Building superintendents had more knowledge while police officers and bank officers had more positive attitudes. All practitioners were more willing to help people with dementia symptoms when they were on official duty. Participants who had more knowledge about dementia were associated with a higher willingness to help people with dementia symptoms.


Assuntos
Demência , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Estudos Transversais , Macau , Inquéritos e Questionários , Ocupações
12.
Front Bioeng Biotechnol ; 10: 910902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910012

RESUMO

Multimodal imaging contrast agents for cancer that can not only perform diagnostic functions but also serve as tumor microenvironment-responsive biomaterials are encouraging. In this study, we report the design and fabrication of a novel enzyme-responsive T1 magnetic resonance imaging (MRI) contrast agent that can modulate oxygen in the tumor microenvironment via the catalytic conversion of H2O2 to O2. The T1 contrast agent is a core-shell nanoparticle that consists of manganese oxide and hyaluronic acid (HA)-conjugated mesoporous silica nanoparticle (HA-MnO@MSN). The salient features of the nanoparticle developed in this study are as follows: 1) HA serves as a targeting ligand for CD44-expressing cancer cells; 2) HA allows controlled access of water molecules to the MnO core via the digestion of enzyme hyaluronidase; 3) the generation of O2 bubbles in the tumor by consuming H2O2; and 4) the capability to increase the oxygen tension in the tumor. The r 1 relaxivity of HA-MnO@MSN was measured to be 1.29 mM-1s-1 at a magnetic field strength of 9.4 T. In vitro results demonstrated the ability of continuous oxygen evolution by HA-MnO@MSN. After intratumoral administration of HA-MnO@MSN to an HCT116 xenograft mouse model, T1 weighted MRI contrast was observed after 5 h postinjection and retained up to 48 h. In addition, in vivo photoacoustic imaging of HA-MnO@MSN demonstrated an increase in the tumor oxygen saturation over time after i. t. administration. Thus, the core-shell nanoparticles developed in this study could be helpful in tumor-targeted T1 MR imaging and oxygen modulation.

13.
Theranostics ; 10(15): 6758-6773, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550902

RESUMO

Photodynamic therapy (PDT), which involves the generation of reactive oxygen species (ROS) through interactions of a photosensitizer (PS) with light and oxygen, has been applied in oncology. Over the years, PDT techniques have been developed for the treatment of deep-seated cancers. However, (1) the tissue penetration limitation of excitation photon, (2) suppressed efficiency of PS due to multiple energy transfers, and (3) insufficient oxygen source in hypoxic tumor microenvironment still constitute major challenges facing the clinical application of PDT for achieving effective treatment. We present herein a PS-independent, ionizing radiation-induced PDT agent composed of yttrium oxide nanoscintillators core and silica shell (Y2O3:Eu@SiO2) with an annealing process. Our results revealed that annealed Y2O3:Eu@SiO2 could directly induce comprehensive photodynamic effects under X-ray irradiation without the presence of PS molecules. The crystallinity of Y2O3:Eu@SiO2 was demonstrated to enable the generation of electron-hole (e--h+) pairs in Y2O3 under ionizing irradiation, giving rise to the formation of ROS including superoxide, hydroxyl radical and singlet oxygen. In particular, combining Y2O3:Eu@SiO2 with fractionated radiation therapy increased radio-resistant tumor cell damage. Furthermore, photoacoustic imaging of tumors showed re-distribution of oxygen saturation (SO2) and reoxygenation of the hypoxia region. The results of this study support applicability of the integration of fractionated radiation therapy with Y2O3:Eu@SiO2, achieving synchronously in-depth and oxygen-insensitive X-ray PDT. Furthermore, we demonstrate Y2O3:Eu@SiO2 exhibited radioluminescence (RL) under X-ray irradiation and observed the virtually linear correlation between X-ray-induced radioluminescence (X-RL) and the Y2O3:Eu@SiO2 concentration in vivo. With the pronounced X-RL for in-vivo imaging and dosimetry, it possesses significant potential for utilization as a precision theranostics producing highly efficient X-ray PDT for deep-seated tumors.


Assuntos
Nanopartículas/química , Nanotecnologia/instrumentação , Neoplasias Ovarianas/terapia , Fotoquimioterapia/instrumentação , Dióxido de Silício/química , Ítrio/química , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Nus , Nanopartículas/efeitos da radiação , Neoplasias Ovarianas/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Oxigênio Singlete , Nanomedicina Teranóstica , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Anticancer Res ; 40(12): 6723-6732, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33288565

RESUMO

BACKGROUND/AIM: Nuclear factor kappa B (NF-κB) inactivation and apoptosis activation have been shown to enhance the anticancer effect of cisplatin in oral squamous cell carcinoma (OSCC). Amentoflavone may suppress NF-κB activity and trigger apoptosis in different types of cancer. The aim of this study was to investigate the anticancer effect and mechanism of amentoflavone in combination with cisplatin in OSCC. MATERIALS AND METHODS: We investigated the combination effect and mechanism of amentoflavone and cisplatin via cell viability analysis, flow cytometry-based apoptosis analyses, transwell migration/invasion assay, immunofluorescence staining and western blotting assay. RESULTS: Both amentoflavone and QNZ (NF-κB inhibitor) significantly increased cisplatin-induced cytotoxicity. Amentoflavone reduced cisplatin-triggered NF-κB activity and enhanced cisplatin-induced intrinsic caspase-dependent and independent apoptotic pathways. Moreover, amentoflavone augments cisplatin-suppressed invasion and migration ability of OSCC cells. CONCLUSION: Inactivation of NF-κB and induction of apoptosis through intrinsic caspase-dependent and independent apoptotic pathways are associated with amentoflavone enhanced anti-OSCC efficacy of cisplatin.


Assuntos
Antineoplásicos/farmacologia , Biflavonoides/farmacologia , Carcinoma de Células Escamosas/patologia , Cisplatino/farmacologia , Neoplasias Bucais/patologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Invasividade Neoplásica , Resultado do Tratamento
15.
Nanotechnology ; 20(21): 215501, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19423930

RESUMO

Dengue virus (DENV) is nowadays the most important arthropod-spread virus affecting humans existing in more than 100 countries worldwide. A rapid and sensitive detection method for the early diagnosis of infectious dengue virus urgently needs to be developed. In the present study, a circulating-flow quartz crystal microbalance (QCM) biosensing method combining oligonucleotide-functionalized gold nanoparticles (i.e. AuNP probes) used to detect DENV has been established. In the DNA-QCM method, two kinds of specific AuNP probes were linked by the target sequences onto the QCM chip to amplify the detection signal, i.e. oscillatory frequency change (DeltaF) of the QCM sensor. The target sequences amplified from the DENV genome act as a bridge for the layer-by-layer AuNP probes' hybridization in the method. Besides being amplifiers of the detection signal, the specific AuNP probes used in the DNA-QCM method also play the role of verifiers to specifically recognize their target sequences in the detection. The effect of four AuNP sizes on the layer-by-layer hybridization has been evaluated and it is found that 13 nm AuNPs collocated with 13 nm AuNPs showed the best hybridization efficiency. According to the nanoparticle application, the DNA-QCM biosensing method was able to detect dengue viral RNA in virus-contaminated serum as plaque titers being 2 PFU ml(-1) and a linear correlation (R(2) = 0.987) of DeltaF versus virus titration from 2 x 10(0) to 2 x 10(6) PFU ml(-1) was found. The sensitivity and specificity of the present DNA-QCM method with nanoparticle technology showed it to be comparable to the fluorescent real-time PCR methods. Moreover, the method described herein was shown to not require expensive equipment, was label-free and highly sensitive.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA Viral/análise , Vírus da Dengue/isolamento & purificação , Ouro/química , Sistemas Microeletromecânicos/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Cristalização/métodos , DNA Viral/genética , Vírus da Dengue/genética , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Quartzo/química
16.
Biomater Sci ; 7(11): 4720-4729, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495835

RESUMO

Herein, we report a new type of biodegradable, high surface-area gold nanodandelions (GNDs). This report possesses important features and some are the first of its kind: (1) the large scale green synthesis of GNDs with high monodispersity and a circa 100% yield with consistent chemistry, manufacturing and controls (CMC); (2) cellular/physiological degradability of GNDs leading to its disassembly into debris, which is indicative of the potential for possible body clearance; (3) precision control of the chemicophysical properties of the GNDs including shape, petal number and size, all can be judiciously fine-tuned by the synthetic parameters; (4) highly efficient radiotheranostics of GNDs encompassing better enhanced computed tomography (CT) contrast and pronounced X-ray induced reactive oxygen species (ROS) generation than conventional spherical gold nanoparticles (AuNP). It is noteworthy that the GNDs demonstrate a unique combinational effect of radiosensitization (production of superoxide anions and hydroxyl radicals) and type II photodynamic interaction (generation of singlet oxygen). Given the above, our reported GNDs are promising in clinical translation as radiotheranostics.


Assuntos
Antineoplásicos/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Compostos Radiofarmacêuticos/farmacologia , Nanomedicina Teranóstica , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ouro/química , Ouro/metabolismo , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Tamanho da Partícula , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície , Células Tumorais Cultivadas
17.
Biosens Bioelectron ; 23(12): 1832-7, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18424027

RESUMO

A disposable amperometric immunosensing strip was fabricated for rapid detection of Escherichia coli O157:H7. The method uses an indirect sandwich enzyme-linked immunoassay with double antibodies. Screen-printed carbon electrodes (SPCEs) were framed by commercial silver and carbon inks. For electrochemical characterization the carbon electrodes were coupled with the first E. coli O157:H7-specific antibody, E. coli O157:H7 intact cells and the second E. coli O157:H7-specific antibody conjugated with horseradish peroxidase (HRP). Hydrogen peroxide and ferrocenedicarboxylic acid (FeDC) were used as the substrate for HRP and mediator, respectively, at a potential +300 mV vs. counter/reference electrode. The response current (RC) of the immunosensing strips could be amplified significantly by 13-nm diameter Au nanoparticles (AuNPs) attached to the working electrode. The results show that the combined effects of AuNPs and FeDC enhanced RC by 13.1-fold. The SPCE immunosensing strips were used to detect E. coli O157:H7 specifically. Concentrations of E. coli O157:H7 from 10(2) to 10(7)CFU/ml could be detected. The detection limit was approximately 6CFU/strip in PBS buffer and 50CFU/strip in milk. The SPCE modified with AuNPs and FeDC has the potential for further applications and provides the basis for incorporating the method into an integrated system for rapid pathogen detection.


Assuntos
Eletroquímica/instrumentação , Escherichia coli O157/isolamento & purificação , Análise de Alimentos/instrumentação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Microeletrodos , Fitas Reagentes , Técnicas Biossensoriais/instrumentação , Carbono/química , Contagem de Colônia Microbiana/instrumentação , Equipamentos Descartáveis , Ouro/química , Nanopartículas/química , Propriedades de Superfície
18.
J Microbiol Methods ; 73(1): 7-17, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18279983

RESUMO

A circulating-flow piezoelectric biosensor, based on an Au nanoparticle amplification and verification method, was used for real-time detection of a foodborne pathogen, Escherichia coli O157:H7. A synthesized thiolated probe (Probe 1; 30-mer) specific to E. coli O157:H7 eaeA gene was immobilized onto the piezoelectric biosensor surface. Hybridization was induced by exposing the immobilized probe to the E. coli O157:H7 eaeA gene fragment (104-bp) amplified by PCR, resulting in a mass change and a consequent frequency shift of the piezoelectric biosensor. A second thiolated probe (Probe 2), complementary to the target sequence, was conjugated to the Au nanoparticles and used as a "mass enhancer" and "sequence verifier" to amplify the frequency change of the piezoelectric biosensor. The PCR products amplified from concentrations of 1.2 x 10(2) CFU/ml of E. coli O157:H7 were detectable by the piezoelectric biosensor. A linear correlation was found when the E. coli O157:H7 detected from 10(2) to 10(6) CFU/ml. The piezoelectric biosensor was able to detect targets from real food samples.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli O157/isolamento & purificação , Microbiologia de Alimentos , Nanopartículas Metálicas/análise , Hibridização de Ácido Nucleico/métodos , Oligonucleotídeos/genética , Adesinas Bacterianas/genética , Animais , Bovinos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Eletroquímica , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Ouro/análise , Oligonucleotídeos/síntese química , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
19.
In Vivo ; 32(2): 279-285, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29475910

RESUMO

The goal of the present study was to investigate anticancer effect of amentoflavone on glioblastoma cells in vitro. Our results demonstrated that amentoflavone not only significantly reduced cell viability, nuclear factor-ĸappa B (NF-ĸB) activation, and protein expression of cellular Fas-associated protein with death domain-like interleukin 1 beta-converting enzyme inhibitory protein (C-FLIP) and myeloid cell leukemia 1 (MCL1), but significantly triggered cell accumulation at the sub-G1 phase, loss of mitochondrial membrane potential, and expression of active caspase-3 and -8. In order to verify the effect of NF-ĸB inhibitor on expression of anti-apoptotic proteins, we performed western blotting. We found that the of NF-ĸB inhibitor or amentoflavone markedly diminished protein levels of MCL1 and C-FLIP. Taken all together, our findings show that amentoflavone induces intrinsic and extrinsic apoptosis and inhibits NF-ĸB-modulated anti-apoptotic signaling in U-87 MG cells in vitro.


Assuntos
Apoptose/efeitos dos fármacos , Biflavonoides/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Glioblastoma/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/genética , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
20.
In Vivo ; 32(3): 549-554, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29695559

RESUMO

BACKGROUND/AIM: A previous study indicated that amentoflavone inhibits tumor growth of breast cancer. However, the anti-cancer effects and mechanism of amentoflavone in hepatocellular carcinoma (HCC) have not been elucidated. The aim of the present study was to verify the effect of amentoflavone on tumor progression in HCC. MATERIALS AND METHODS: HCC SK-Hep1 cells were treated with different concentrations of amentoflavone or 10 µM PD98059 (extracellular signal-regulated kinases (ERK) inhibitor) for 48 h, respectively, and then cell viability, NF-κB activation, levels of tumor progression-associated proteins, and cell invasion were evaluated with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), NF-κB reporter gene assay, western blotting, and cell invasion assay. RESULTS: The results demonstrated that both amentoflavone and PD98059 not only significantly reduced cell viability, NF-κB activation, and cell invasion, but also inhibited the expression of tumor progression-associated proteins. In addition, we found that amentoflavone suppresses ERK phosphorylation. CONCLUSION: The results of the present study suggest that amentoflavone down-regulates ERK-modulated tumor progression in HCC.


Assuntos
Antineoplásicos/farmacologia , Biflavonoides/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA