Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxics ; 11(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36977032

RESUMO

The purpose of this experiment was to investigate the feasibility of treating arsenopyrite-containing excavated crushed rock (ECR) in cropland by examining the amounts of arsenic released from various sizes of ECR mixed with soils at different ratios under three water levels using a batch incubation experiment. A total of 4 particle sizes of ECR were mixed with soil from 0% to 100% in 25% increments under three mass water contents such as 15%, 27%, and saturation. The results showed that the amount of As released from ECR mixed with soil was in the order of 27% saturation and 15% for 180 days regardless of the ECR:soil ratios, and the increase in the amount of As released before 90 days was slightly greater than that after 90 days. The maximum and minimum contents of released As were observed at 350.3 mg·kg-1 (ECR:Soil = 100:0, ECR size = 0.0-0.053 mm, and Ɵm = 32.2%), indicating that the smaller the ECR particle size resulted in a higher extractable As concentration. The amount of As released was higher than the relevant standard (25 mg·kg-1), except for ECR with a mixing ratio (25:75) and particle size (4.75-10.0 mm). In conclusion, we assumed that the amount of As released from ECR was influenced by the higher surface area of smaller ECR particle sizes and mass water content, which determine the porosity of the soil. However, further studies are needed on the transport and adsorption of released As depending on the physical and hydrological properties of the soil to determine the size and incorporation rate of ECR into the soil in view of the government standard.

2.
Arch Environ Contam Toxicol ; 58(2): 268-74, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19633979

RESUMO

A study was conducted to compare the effects of phosphate (P) materials in reducing cadmium extractability. Seven P materials (commercial P fertilizers--fused phosphate (FP), 'fused and superphosphate' [FSP], and rock phosphate [RP]; P chemicals--Ca[H(2)PO(4)](2).H(2)O, [NH(4)](2)HPO(4), KH(2)PO(4), and K(2)HPO(4)) were selected for the test. The selected P source was mixed with Cd-contaminated soil at the rate of 0, 200, 400, 800, and 1,600 mg P kg(-1) under controlled moisture conditions at 70% of water holding capacity, then incubated for 8 weeks. FP, Ca(H(2)PO(4))(2) H(2)O, KH(2)PO(4), and K(2)HPO(4) significantly decreased NH(4)OAc-extractable Cd (plant-available form) concentrations with increasing application rates. Compared to other phosphate materials used, K(2)HPO(4) was found to be the most effective in reducing the plant-available Cd concentration in soil, mainly due to the negative charge increase caused by soil pH and phosphate adsorption. Contrary to the general information, FSP and (NH(4))(2)HPO(4) increased Cd extractability at low levels of P application (<400 mg kg(-1)), and thereafter Cd extractability decreased significantly with increasing application rate. RP scarcely had an effect on reducing Cd extractability. Ion activity products of CdHPO(4), Cd(OH)(2), and CdCO(3) analyzed by the MINTEQ program were significantly increased by K(2)HPO(4) addition, but the effect of Cd-P compound formation on reducing Cd extractability was negligible. Conclusively, the P-induced alleviation of Cd extractability can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than Cd-P precipitation, and therefore, alkaline P materials such as K(2)HPO(4) are effective for immobilizing soil Cd.


Assuntos
Cádmio/química , Fosfatos/química , Poluentes do Solo/química , Cádmio/análise , Difosfatos/química , Fertilizantes , Compostos de Potássio/química , Solo , Poluentes do Solo/análise
3.
Saudi J Biol Sci ; 25(2): 349-353, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29472789

RESUMO

Kale (Brassica oleracea L. Acephala Group) is the rich source of medicinal value sulphur compounds, glucosinolates (GLSs). The aim of this study was to investigate the effect of different proportion of sulphur (S) supplementation levels on the accumulation of GLSs in the leaves of the kale cultivar ('TBC'). High performance liquid chromatography (HPLC) separation method guided to identify and quantify six GSLs including three aliphatic (progoitrin, sinigrin and gluconapin) and three indolyl (glucobrassicin, 4-methoxyglucobrassicin and neoglucobrasscin) respectively. Analysis of these distinct levels of S supplementation revealed that the accumulation of individual and total GLSs was directly proportional to the S concentration. The maximum levels of total GLSs (26.8 µmol/g DW) and glucobrassicin (9.98 µmol/g DW) were found in lower and upper parts of the leaves supplemented with 1 mM and 2 mM S, respectively. Interestingly, aliphatic GSLs were noted predominant in all the parts (50.1, 59.3 and 56% of total GSLs). Among the aliphatic and indolyl GSLs, sinigrin and glucobrassicin account 35.3 and 30.88% of the total GSLs. From this study, it is concluded that supply of S enhance the GSLs accumulation in kale.

4.
J Hazard Mater ; 147(1-2): 91-6, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17239531

RESUMO

Large amounts of fine zeolite by-product were produced when natural zeolite was processed into a powder with a specific particle size. In Korea, large piles of this by-product exist with no disposal options. We conducted studies to determine whether mixtures of this by-product with other materials could be used as a substitute to activated carbon for wastewater treatment. A granular material was formulated by mixing zeolite by-product with Portland cement (ZeoAds), and this material was tested for its efficiency for heavy metal removal from aqueous solutions. The ZeoAds removed Pb and Cu in an aqueous solution up to 27.03 and 23.25 mg g(-1), respectively. Adsorption kinetics of the ZeoAds for heavy metals was first-order, and the ZeoAds removed about 90% of the Cu within 30 min. At solution pH lower than five, the adsorption specificity of the ZeoAds for metals was Pb>Cu>Cd>or=Zn. Langmuir isotherms adequately described the adsorption, and adsorption capacity increased as the particle size decreased to 2 mm in diameter. The maximum adsorption capacities of the metals for the ZeoAds were, irrespective of the kinds of metals, about two times greater than those of activated carbon. Column experiments demonstrated that the ZeoAds was more efficient and had a higher sorptive capacity than activated carbon for removing metals from industrial wastewater.


Assuntos
Metais Pesados/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Zeolitas , Adsorção , Materiais de Construção , Resíduos Industriais , Purificação da Água/métodos
5.
Arch Environ Contam Toxicol ; 52(4): 496-502, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17253095

RESUMO

To reduce cadmium (Cd) uptake of plants cultivated in heavy metal-contaminated soil, the best liming material was selected in the incubation test. The effect of the selected material was evaluated in the field. In the incubation experimentation, CaCO(3), Ca(OH)(2), CaSO(4).2H(2)O, and oyster shell meal were mixed with soil at rates corresponding to 0, 400, 800, 1600, 3200 mg Ca kg(-1). The limed soil was moistened to 70% of field moisture capacity, and incubated at 25 degrees C for 4 weeks. Ca(OH)(2) was found to be more efficient on reducing soil NH(4)OAc extractable Cd concentration, due to pH increase induced net negative charge. The selected Ca(OH)(2) was applied at rates 0, 2, 4, 8 Mg ha(-1) and then cultivated radish (Raphanus sativa L.) in the field. NH(4)OAc extractable Cd concentration of soil and plant Cd concentration decreased significantly with increasing Ca(OH)(2) rate, since alkaline-liming material markedly increased net negative charge of soil induced by pH increase, and decreased bioavailable Cd fractions (exchangeable + acidic and reducible Cd fraction) during radish cultivation. Cadmium uptake of radish could be reduced by about 50% by amending with about 5 Mg ha(-1) Ca(OH)(2) without adverse effect on radish yield and growth. The increase of net negative charge of soil by Ca(OH)(2) application may suppress Cd uptake and the competition between Ca(2+) and Cd(2+) may additionally affect the suppression of Cd uptake.


Assuntos
Cádmio/química , Hidróxido de Cálcio/química , Raphanus/metabolismo , Poluentes do Solo/química , Gerenciamento de Resíduos/métodos , Cádmio/metabolismo , Compostos de Cálcio/química , Compostos de Cálcio/farmacologia , Hidróxido de Cálcio/farmacologia , Sulfato de Cálcio/química , Sulfato de Cálcio/farmacologia , Ouro , Concentração de Íons de Hidrogênio , Mineração , Óxidos/química , Óxidos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Raphanus/efeitos dos fármacos , Poluentes do Solo/metabolismo
6.
Saudi J Biol Sci ; 24(2): 436-443, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28149184

RESUMO

Nitrogen (N), phosphorous (P) and potassium (K) are the most limiting factors in crop production. N often affects the amino acid composition of protein and in turn its nutritional quality. In Brassica plants, abundant supply of N fertilizer decreases the relative proportion of glucosinolates (GSLs), thus reducing the biological and medical values of the vegetables. Hence effort was made to evaluate the influence of different proportions of nutrient solutions containing N-P-K on the GSL profiles of rocket salad (Eruca sativa Mill.). Fifteen desulpho-(DS) GSLs were isolated and identified using liquid chromatography-mass spectrometry (LC/MS) analysis. Rocket salad plants supplied with lesser amount of N, P or higher concentrations of K showed a typical improvement in total GSL contents. In contrast, total GSL levels were less at higher N supply. Furthermore, with N concentrations above 5 mM and K concentrations less than 2.5 mM, the GSL amounts were on average 13.51 and 13.75 µmol/g dry weight (DW), respectively. Aliphatic GSLs predominated in all concentrations of NPK while indolyl GSLs made up marginally less amount of the total compositions. Five and 2 mM N and P possessed much higher levels of several types of aliphatic GSLs than other concentrations, including glucoerucin, glucoraphanin and dimeric 4-mercaptobutyl GSL. From this perspective, it is contended that supply of less N results in enhancing the metabolic pathway for the synthesis of GSLs in rocket salad.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA