Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788710

RESUMO

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Hipocampo , Plasticidade Neuronal , Encefalopatia Associada a Sepse , Animais , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/genética , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/terapia , Encefalopatia Associada a Sepse/genética , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dependovirus/genética , Masculino , Potenciação de Longa Duração , Receptor trkB/metabolismo , Receptor trkB/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Sinapses/metabolismo
2.
Glia ; 72(8): 1484-1500, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38780213

RESUMO

Microglia are innate immune cells in the brain and show exceptional heterogeneity. They are key players in brain physiological development regulating synaptic plasticity and shaping neuronal networks. In pathological disease states, microglia-induced synaptic pruning mediates synaptic loss and targeting microglia was proposed as a promising therapeutic strategy. However, the effect of microglia depletion and subsequent repopulation on dendritic spine density and neuronal function in the adult brain is largely unknown. In this study, we investigated whether pharmacological microglia depletion affects dendritic spine density after long-term permanent microglia depletion and after short-term microglia depletion with subsequent repopulation. Long-term microglia depletion using colony-stimulating-factor-1 receptor (CSF1-R) inhibitor PLX5622 resulted in increased overall spine density, especially of mushroom spines, and increased excitatory postsynaptic current amplitudes. Short-term PLX5622 treatment with subsequent repopulation of microglia had an opposite effect resulting in activated microglia with increased synaptic phagocytosis and consequently decreased spine density and reduced excitatory neurotransmission, while Barnes maze and elevated plus maze testing was unaffected. Moreover, RNA sequencing data of isolated repopulated microglia showed an activated and proinflammatory phenotype. Long-term microglia depletion might be a promising therapeutic strategy in neurological diseases with pathological microglial activation, synaptic pruning, and synapse loss. However, repopulation after depletion induces activated microglia and results in a decrease of dendritic spines possibly limiting the therapeutic application of microglia depletion. Instead, persistent modulation of pathological microglia activity might be beneficial in controlling synaptic damage.


Assuntos
Encéfalo , Espinhas Dendríticas , Camundongos Endogâmicos C57BL , Microglia , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Masculino , Camundongos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Fagocitose/fisiologia , Fagocitose/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Camundongos Transgênicos , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Compostos Orgânicos
3.
Brain ; 146(2): 600-611, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35259208

RESUMO

Anti-IgLON5 disease is a newly defined clinical entity characterized by a progressive course with high disability and mortality rate. While precise pathogenetic mechanisms remain unclear, features characteristic of both autoimmune and neurodegenerative diseases were reported. Data on immunotherapy are limited, and its efficacy remains controversial. In this study, we retrospectively investigated an anti-IgLON5 disease cohort with special focus on clinical, serological and genetic predictors of the immunotherapy response and long-term outcome. Patients were recruited from the GENERATE (German Network for Research on Autoimmune Encephalitis) registry. Along with clinical parameters, anti-IgLON5 immunoglobulin (Ig)G in serum and CSF, anti-IgLON5 IgG1-4, IgA and IgM in serum, neurofilament light chain and glial fibrillary acidic protein in serum as well as human leukocyte antigen-genotypes were determined. We identified 53 patients (symptom onset 63.8 ± 10.3 years, female:male 1:1.5). The most frequent initial clinical presentations were bulbar syndrome, hyperkinetic syndrome or isolated sleep disorder [at least one symptom present in 38% (20/53)]. At the time of diagnosis, the majority of patients had a generalized multi-systemic phenotype; nevertheless, 21% (11/53) still had an isolated brainstem syndrome and/or a characteristic sleep disorder only. About one third of patients [28% (15/53)] reported subacute disease onset and 51% (27/53) relapse-like exacerbations during the disease course. Inflammatory CSF changes were evident in 37% (19/51) and increased blood-CSF-barrier permeability in 46% (21/46). CSF cell count significantly decreased, while serum anti-IgLON5 IgG titre increased with disease duration. The presence of human leukocyte antigen-DRB1*10:01 [55% (24/44)] was associated with higher serum anti-IgLON5 IgG titres. Neurofilament light chain and glial fibrillary acidic protein in serum were substantially increased (71.1 ± 103.9 pg/ml and 126.7 ± 73.3 pg/ml, respectively). First-line immunotherapy of relapse-like acute-to-subacute exacerbation episodes resulted in improvement in 41% (11/27) of patients and early initiation within the first 6 weeks was a predictor for therapy response. Sixty-eight per cent (36/53) of patients were treated with long-term immunotherapy and 75% (27/36) of these experienced no further disease progression (observation period of 20.2 ± 15.4 months). Long-term immunotherapy initiation during the first year after onset and low pre-treatment neurofilament light chain were significant predictors for a better outcome. In conclusion, subacute disease onset and early inflammatory CSF changes support the primary role of autoimmune mechanisms at least at initial stages of anti-IgLON5 disease. Early immunotherapy, prior to advanced neurodegeneration, is associated with a better long-term clinical outcome. Low serum neurofilament light chain at treatment initiation may serve as a potential biomarker of the immunotherapy response.


Assuntos
Transtornos do Sono-Vigília , Humanos , Masculino , Feminino , Proteína Glial Fibrilar Ácida , Estudos Retrospectivos , Imunoglobulina G/metabolismo , Progressão da Doença , Imunoterapia
4.
J Neuroinflammation ; 20(1): 289, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041192

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is characterized by symptoms of delirium including hallucinations, impaired concentration, agitation, or coma and is associated with poor outcome in the early phase of sepsis. In addition, sepsis survivors often suffer from persisting memory deficits and impaired executive functions. Recent studies provide evidence that microglia are involved in the pathophysiology of SAE. METHODS: Here, we investigated whether pharmacological depletion of microglia using PLX5622 (1200 ppm or 300 ppm) in the acute phase of sepsis is able to prevent long-term neurocognitive decline in a male mouse model of polymicrobial sepsis or lipopolysaccharide-induced sterile neuroinflammation. Therefore, we performed the novel object recognition test at different time points after sepsis to address hippocampus-dependent learning. To further assess synapse engulfment in microglia, colocalization analysis was performed using high-resolution 3D Airyscan imaging of Iba1 and Homer1. We also investigated the effect of PLX5622 on acute astrocyte and chronic microglia proliferation in the hippocampus after sepsis induction using immunofluorescence staining. RESULTS: High-dose application of the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 (1200 ppm) seven days prior to sepsis induction lead to 70-80% microglia reduction but resulted in fatal outcome of bacterial sepsis or LPS induced inflammation. This is likely caused by severely compromised host immune response upon PLX5622-induced depletion of peripheral monocytes and macrophages. We therefore tested partial microglia depletion using a low-dose of PLX5622 (300 ppm) for seven days prior to sepsis which resulted in an increased survival in comparison to littermates subjected to high-dose CSF1R inhibiton and to a stable microglia reduction of ~ 40%. This partial microglia depletion in the acute stage of sepsis largely prevented the engulfment and microglia-induced stripping of postsynaptic terminals. In addition, PLX5622 low-dose microglia depletion attenuated acute astrogliosis as well as long-term microgliosis and prevented long-term neurocognitive decline after experimental sepsis. CONCLUSIONS: We conclude that partial microglia depletion before the induction of sepsis may be sufficient to attenuate long-term neurocognitive dysfunction. Application of PLX5622 (300 ppm) acts by reducing microglia-induced synaptic attachement/engulfment and preventing chronic microgliosis.


Assuntos
Doenças Neuroinflamatórias , Sepse , Camundongos , Animais , Masculino , Microglia , Macrófagos , Receptores de Fator Estimulador de Colônias , Sepse/complicações
5.
Crit Care ; 27(1): 214, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259091

RESUMO

Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.


Assuntos
Encefalopatias , Encefalopatia Associada a Sepse , Sepse , Humanos , Encefalopatia Associada a Sepse/complicações , Encefalopatia Associada a Sepse/diagnóstico , Filamentos Intermediários , Sepse/complicações , Sepse/diagnóstico , Biomarcadores
6.
J Neuroinflammation ; 19(1): 196, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907972

RESUMO

BACKGROUND: In 2014, we first described novel autoantibodies to the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1-IgG/anti-Sj) in patients with autoimmune cerebellar ataxia (ACA) in this journal. Here, we provide a review of the available literature on ITPR1-IgG/anti-Sj, covering clinical and paraclinical presentation, tumour association, serological findings, and immunopathogenesis. METHODS: Review of the peer-reviewed and PubMed-listed English language literature on ITPR1-IgG/anti-Sj. In addition, we provide an illustrative report on a new patient with ITPR1-IgG-associated encephalitis with cognitive decline and psychosis. RESULTS: So far, at least 31 patients with serum ITPR1-IgG/anti-Sj have been identified (clinical information available for 21). The most common manifestations were ACA, encephalopathy with seizures, myelopathy, and (radiculo)neuropathy, including autonomic neuropathy. In 45% of cases, an underlying tumour was present, making the condition a facultative paraneoplastic neurological disorder. The neurological syndrome preceded tumour diagnosis in all but one case. In most cases, immunotherapy had only moderate or no effect. The association of ITPR1-IgG/anti-Sj with manifestations other than ACA is corroborated by the case of a 48-year-old woman with high-titre ITPR1-IgG/anti-Sj antibodies and rapid cognitive decline, affecting memory, attention and executive function, and psychotic manifestations, including hallucinations, investigated here in detail. FDG-PET revealed right-temporal glucose hypermetabolism compatible with limbic encephalitis. Interestingly, ITPR1-IgG/anti-Sj mainly belonged to the IgG2 subclass in both serum and cerebrospinal fluid (CSF) in this and further patients, while it was predominantly IgG1 in other patients, including those with more severe outcome, and remained detectable over the entire course of disease. Immunotherapy with intravenous methylprednisolone, plasma exchange, and intravenous immunoglobulins, was repeatedly followed by partial or complete recovery. Long-term treatment with cyclophosphamide was paralleled by relative stabilization, although the patient noted clinical worsening at the end of each treatment cycle. CONCLUSIONS: The spectrum of neurological manifestations associated with ITPR1 autoimmunity is broader than initially thought. Immunotherapy may be effective in some cases. Studies evaluating the frequency of ITPR1-IgG/anti-Sj in patients with cognitive decline and/or psychosis of unknown aetiology are warranted. Tumour screening is essential in patients presenting with ITPR1-IgG/anti-Sj.


Assuntos
Ataxia Cerebelar , Encefalite , Doenças do Sistema Nervoso Periférico , Autoanticorpos , Proteínas de Transporte , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/etiologia , Feminino , Humanos , Imunoglobulina G , Inositol , Receptores de Inositol 1,4,5-Trifosfato , Pessoa de Meia-Idade , Convulsões
8.
Int J Mol Sci ; 19(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326559

RESUMO

Liver dysfunction during sepsis is an independent risk factor leading to increased mortality rates. Specifically, dysregulation of hepatic biotransformation capacity, especially of the cytochrome P450 (CYP) system, represents an important distress factor during host response. The activity of the conserved stress enzyme sphingomyelin phosphodiesterase 1 (SMPD1) has been shown to be elevated in sepsis patients, allowing for risk stratification. Therefore, the aim of the present study was to investigate whether SMPD1 activity has an impact on expression and activity of different hepatic CYP enzymes using an animal model of polymicrobial sepsis. Polymicrobial sepsis was induced in SMPD1 wild-type and heterozygous mice and hepatic ceramide content as well as CYP mRNA, protein expression and enzyme activities were assessed at two different time points, at 24 h, representing the acute phase, and at 28 days, representing the post-acute phase of host response. In the acute phase of sepsis, SMPD1+/+ mice showed an increased hepatic C16- as well as C18-ceramide content. In addition, a downregulation of CYP expression and activities was detected. In SMPD1+/- mice, however, no noticeable changes of ceramide content and CYP expression and activities during sepsis could be observed. After 28 days, CYP expression and activities were normalized again in all study groups, whereas mRNA expression remained downregulated in SMPD+/+ animals. In conclusion, partial genetic inhibition of SMPD1 stabilizes hepatic ceramide content and improves hepatic monooxygenase function in the acute phase of polymicrobial sepsis. Since we were also able to show that the functional inhibitor of SMPD1, desipramine, ameliorates downregulation of CYP mRNA expression and activities in the acute phase of sepsis in wild-type mice, SMPD1 might be an interesting pharmacological target, which should be further investigated.


Assuntos
Biotransformação/efeitos dos fármacos , Ceramidas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Sepse/metabolismo , Sepse/microbiologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Biomarcadores , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno , Isoenzimas , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Sepse/complicações , Sepse/genética
10.
Int J Mol Sci ; 18(4)2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28420138

RESUMO

Cardiac dysfunction, in particular of the left ventricle, is a common and early event in sepsis, and is strongly associated with an increase in patients' mortality. Acid sphingomyelinase (SMPD1)-the principal regulator for rapid and transient generation of the lipid mediator ceramide-is involved in both the regulation of host response in sepsis as well as in the pathogenesis of chronic heart failure. This study determined the degree and the potential role to which SMPD1 and its modulation affect sepsis-induced cardiomyopathy using both genetically deficient and pharmacologically-treated animals in a polymicrobial sepsis model. As surrogate parameters of sepsis-induced cardiomyopathy, cardiac function, markers of oxidative stress as well as troponin I levels were found to be improved in desipramine-treated animals, desipramine being an inhibitor of ceramide formation. Additionally, ceramide formation in cardiac tissue was dysregulated in SMPD1+/+ as well as SMPD1-/- animals, whereas desipramine pretreatment resulted in stable, but increased ceramide content during host response. This was a result of elevated de novo synthesis. Strikingly, desipramine treatment led to significantly improved levels of surrogate markers. Furthermore, similar results in desipramine-pretreated SMPD1-/- littermates suggest an SMPD1-independent pathway. Finally, a pattern of differentially expressed transcripts important for regulation of apoptosis as well as antioxidative and cytokine response supports the concept that desipramine modulates ceramide formation, resulting in beneficial myocardial effects. We describe a novel, protective role of desipramine during sepsis-induced cardiac dysfunction that controls ceramide content. In addition, it may be possible to modulate cardiac function during host response by pre-conditioning with the Food and Drug Administration (FDA)-approved drug desipramine.


Assuntos
Ceramidas/metabolismo , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Metabolismo dos Lipídeos , Sepse/complicações , Sepse/metabolismo , Animais , Biomarcadores , Débito Cardíaco/efeitos dos fármacos , Desipramina/metabolismo , Desipramina/farmacologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sepse/genética , Sepse/microbiologia , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Troponina I/metabolismo
11.
Mol Med ; 22: 412-423, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27341515

RESUMO

The pathophysiology of sepsis involves activation of acid sphingomyelinase (SMPD1) with subsequent generation of the bioactive mediator ceramide. We herein evaluated the hypothesis that the enzyme exerts biological effects in endothelial stress response. Plasma-secreted sphingomyelinase activity, ceramide generation and lipid raft formation were measured in human microcirculatory endothelial cells (HMEC-1) stimulated with serum obtained from sepsis patients. Clustering of receptors relevant for signal transduction was studied by immuno staining. The role of SMPD1 for macrodomain formation was tested by pharmacological inhibition. To confirm the involvement of the stress enzyme, direct inhibitors (amino bisphosphonates) and specific downregulation of the gene was tested with respect to ADAMTS13 expression and cytotoxicity. Plasma activity and amount of SMPD1 were increased in septic patients dependent on clinical severity. Increased breakdown of sphingomyelin to ceramide in HMECs was observed following stimulation with serum from sepsis patients in vitro. Hydrolysis of sphingomyelin, clustering of receptor complexes, such as the CD95L/Fas-receptor, as well as formation of ceramide enriched macrodomains was abrogated using functional inhibitors (desipramine and NB6). Strikingly, the stimulation of HMECs with serum obtained from sepsis patients or mixture of proinflammatory cytokines resulted in cytotoxicity and ADAMTS13 downregulation which was abrogated using desipramine, amino bisphosphonates and genetic inhibitors. SMPD1 is involved in the dysregulation of ceramide metabolism in endothelial cells leading to macrodomain formation, cytotoxicity and downregulation of ADAMTS13 expression. Functional inhibitors, such as desipramine, are capable to improve endothelial stress response during sepsis and might be considered as a pharmacological treatment strategy to favor the outcome.

13.
Ann Clin Transl Neurol ; 10(2): 204-212, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479924

RESUMO

OBJECTIVE: Serum neurofilament light chain (sNfL) is a biomarker for neuroaxonal damage and has been found to be elevated in several neurological diseases with neuronal destruction. New onset of confusion is a hallmark of severity in infections. The objective of this study was to determine whether sNfL levels are increased in patients with community-acquired pneumonia (CAP) and if increased sNfL levels are associated with disease-associated confusion or disease severity. METHODS: In this observational study, sNfL levels were determined with single-molecule array technology in CAP patients of the CAPNETZ cohort with validated CRB (confusion, respiratory rate, and blood pressure)-65 score. We determined associations between log-transformed sNfL concentrations, well-defined clinical characteristics, and unfavorable outcome in multivariable analyses. Receiver operating characteristic (ROC) analysis was performed to assess the prediction accuracy of sNfL levels for confusion in CAP patients. RESULTS: sNfL concentrations were evaluated in 150 CAP patients. Patients with confusion had higher sNfL levels as compared to non-confusion patients of comparable overall disease severity. ROC analysis of sNfL and confusion provided an area under the curve (AUC) of 0.73 (95% CI 0.62-0.82). Log-transformed sNfL levels were not associated with general disease severity. In a logistic regression analysis, log2-sNfL was identified as a strong predictor for an unfavorable outcome. INTERPRETATION: sNfL levels are specifically associated with confusion and not with pneumonia disease severity, thus reflecting a potential objective marker for encephalopathy in these patients. Furthermore, sNfL levels are also associated with unfavorable outcome in these patients and might help clinicians to identify patients at risk.


Assuntos
Encefalopatias , Pneumonia , Humanos , Filamentos Intermediários , Biomarcadores , Pneumonia/diagnóstico , Curva ROC
14.
World J Biol Psychiatry ; 24(1): 1-11, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35172679

RESUMO

OBJECTIVES: Decreased vagal modulation, which has consistently been observed in schizophrenic patients, might contribute to increased cardiac mortality in schizophrenia. Previously, associations between CHRM2 (Cholinergic Receptor Muscarinic 2) and cardiac autonomic features have been reported. Here, we tested for possible associations between these polymorphisms and heart rate variability in patients with schizophrenia. METHODS: A total of three single nucleotide polymorphisms (SNPs) in CHRM2 (rs73158705 A>G, rs8191992 T>A and rs2350782 T>C) that achieved significance (p < 5 * 10-8) in genome-wide association studies for cardiac autonomic features were genotyped in 88 drug-naïve patients, 61 patients receiving antipsychotic medication and 144 healthy controls. Genotypes were analysed for associations with parameters of heart rate variability and complexity, in each diagnostic group. RESULTS: We observed a significantly altered heart rate variability in unmedicated patients with identified genetic risk status in rs73158705 A>G, rs8191992 T>A and rs2350782 T>C as compared to genotype non-risk status. In patients receiving antipsychotic medication and healthy controls, these associations were not observed. DISCUSSION: We report novel candidate genetic associations with cardiac autonomic dysfunction in schizophrenia, but larger cohorts are required for replication.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Antipsicóticos/efeitos adversos , Estudo de Associação Genômica Ampla , Receptor Muscarínico M2/genética , Polimorfismo de Nucleotídeo Único , Frequência Cardíaca/fisiologia
15.
Sci Adv ; 9(21): eabq7806, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235660

RESUMO

Sepsis-associated encephalopathy (SAE) is a severe and frequent complication of sepsis causing delirium, coma, and long-term cognitive dysfunction. We identified microglia and C1q complement activation in hippocampal autopsy tissue of patients with sepsis and increased C1q-mediated synaptic pruning in a murine polymicrobial sepsis model. Unbiased transcriptomics of hippocampal tissue and isolated microglia derived from septic mice revealed an involvement of the innate immune system, complement activation, and up-regulation of lysosomal pathways during SAE in parallel to neuronal and synaptic damage. Microglial engulfment of C1q-tagged synapses could be prevented by stereotactic intrahippocampal injection of a specific C1q-blocking antibody. Pharmacologically targeting microglia by PLX5622, a CSF1-R inhibitor, reduced C1q levels and the number of C1q-tagged synapses, protected from neuronal damage and synapse loss, and improved neurocognitive outcome. Thus, we identified complement-dependent synaptic pruning by microglia as a crucial pathomechanism for the development of neuronal defects during SAE.


Assuntos
Encefalopatia Associada a Sepse , Sepse , Camundongos , Animais , Microglia/metabolismo , Complemento C1q/metabolismo , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/metabolismo , Sinapses/metabolismo , Sepse/complicações , Sepse/metabolismo
16.
Genes (Basel) ; 13(11)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421807

RESUMO

BACKGROUND: Cardiac autonomic dysfunction (CADF) is a major contributor to increased cardiac mortality in schizophrenia patients. The aberrant function of voltage-gated ion channels, which are widely distributed in the brain and heart, may link schizophrenia and CADF. In search of channel-encoding genes that are associated with both CADF and schizophrenia, CACNA1C and KCNH2 are promising candidates. In this study, we tested for associations between genetic findings in both genes and CADF parameters in schizophrenia patients whose heart functions were not influenced by psychopharmaceuticals. METHODS: First, we searched the literature for single-nucleotide polymorphisms (SNPs) in CACNA1C and KCNH2 that showed genome-wide significant association with schizophrenia. Subsequently, we looked for such robust associations with CADF traits at these loci. A total of 5 CACNA1C SNPs and 9 KCNH2 SNPs were found and genotyped in 77 unmedicated schizophrenia patients and 144 healthy controls. Genotype-related impacts on heart rate (HR) dynamics and QT variability indices (QTvi) were analyzed separately in patients and healthy controls. RESULTS: We observed significantly increased QTvi in unmedicated patients with CADF-associated risk in CACNA1C rs2283274 C and schizophrenia-associated risk in rs2239061 G compared to the non-risk allele in these patients. Moreover, unmedicated patients with previously identified schizophrenia risk alleles in KCNH2 rs11763131 A, rs3807373 A, rs3800779 C, rs748693 G, and 1036145 T showed increased mean HR and QTvi as compared to non-risk alleles. CONCLUSIONS: We propose a potential pleiotropic role for common variation in CACNA1C and KCNH2 associated with CADF in schizophrenia patients, independent of antipsychotic medication, that predisposes them to cardiac arrhythmias and premature death.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Canais de Cálcio Tipo L/genética , Polimorfismo de Nucleotídeo Único , Antipsicóticos/uso terapêutico , Genótipo , Canal de Potássio ERG1/genética
17.
Schizophr Res ; 229: 73-79, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33221148

RESUMO

BACKGROUND: There is growing evidence for a shared genetic basis between schizophrenia risk and cardiovascular disease. Reduced efferent vagal activity, indexed by reduced heart rate variability (HRV), has been consistently described in patients with schizophrenia and may potentially contribute to the increased cardiovascular risk in these patients. In this study, we tested the hypothesis whether the established schizophrenia risk variant HCN1 rs16902086 (A > G) is associated with reduced HRV. METHODS: We analyzed the risk status of HCN1 rs16902086 (AG/GG vs. AA genotype) in 83 unmedicated patients with schizophrenia and 96 healthy controls and investigated genotype-related impacts on various HRV parameters. RESULTS: We observed significantly increased resting heart rates and a marked decrease of vagal modulation in our patient cohort. Strikingly, HCN1 rs16902086 (A > G) was associated with reduced HRV parameters in patients only. A trend towards more pronounced HRV deviations was observed in homozygous (GG) compared to heterozygous patients (AG). CONCLUSION: We present first evidence for a genetic risk factor that is associated with decreased vagal modulation in unmedicated patients with schizophrenia. Moreover, our findings suggest that HCN1 might be involved in reduced vagal modulation and possibly in increased cardiac mortality in schizophrenia patients. Thus, our data indicate that reduced vagal modulation might be an endophenotype of schizophrenia.


Assuntos
Esquizofrenia , Endofenótipos , Coração , Frequência Cardíaca , Humanos , Esquizofrenia/genética , Nervo Vago
18.
Front Med (Lausanne) ; 7: 616500, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553211

RESUMO

Breakdown of the inert and constitutive membrane building block sphingomyelin to the highly active lipid mediator ceramide by extracellularly active acid sphingomyelinase is tightly regulated during stress response and opens the gate for invading pathogens, triggering the immune response, development of remote organ failure, and tissue repair following severe infection. How do one enzyme and one mediator manage all of these affairs? Under physiological conditions, the enzyme is located in the lysosomes and takes part in the noiseless metabolism of sphingolipids, but following stress the protein is secreted into circulation. When secreted, acid sphingomyelinase (ASM) is able to hydrolyze sphingomyelin present at the outer leaflet of membranes to ceramide. Its generation troubles the biophysical context of cellular membranes resulting in functional assembly and reorganization of proteins and receptors, also embedded in highly conserved response mechanisms. As a consequence of cellular signaling, not only induction of cell death but also proliferation, differentiation, and fibrogenesis are affected. Here, we discuss the current state of the art on both the impact and function of the enzyme during host response and damage control. Also, the potential role of lysosomotropic agents as functional inhibitors of this upstream alarming cascade is highlighted.

19.
J Clin Med ; 9(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150970

RESUMO

Sepsis is a major cause of death in intensive care units worldwide. The acute phase of sepsis is often accompanied by sepsis-associated encephalopathy, which is highly associated with increased mortality. Moreover, in the chronic phase, more than 50% of surviving patients suffer from severe and long-term cognitive deficits compromising their daily quality of life and placing an immense burden on primary caregivers. Due to a growing number of sepsis survivors, these long-lasting deficits are increasingly relevant. Despite the high incidence and clinical relevance, the pathomechanisms of acute and chronic stages in sepsis-associated encephalopathy are only incompletely understood, and no specific therapeutic options are yet available. Here, we review the emergence of sepsis-associated encephalopathy from initial clinical presentation to long-term cognitive impairment in sepsis survivors and summarize pathomechanisms potentially contributing to the development of sepsis-associated encephalopathy.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32019875

RESUMO

OBJECTIVE: Autoimmune steroid-responsive meningoencephalomyelitis with linear perivascular gadolinium enhancement in brain MRI is regarded as glial fibrillary acidic protein (GFAP) astrocytopathy characterized by anti-GFAP antibodies (ABs). We questioned whether anti-GFAP ABs are necessarily associated with this syndrome. METHODS: Two patients with a strikingly similar disease course suggestive of autoimmune GFAP astrocytopathy are reported. Clinical examination, MRI, laboratory, and CSF analysis were performed. Neuropathologic examination of brain tissue was obtained from one patient. Serum and CSF were additionally tested using mouse brain slices, microglia-astrocyte cocultures, and a GFAP-specific cell-based assay. RESULTS: Both patients presented with subacute influenza-like symptoms and developed severe neurocognitive and neurologic deficits and impaired consciousness. MRIs of both patients revealed radial perivascular gadolinium enhancement extending from the lateral ventricles to the white matter suggestive of autoimmune GFAP astrocytopathy. Both patients responded well to high doses of methylprednisolone. Only one patient had anti-GFAP ABs with a typical staining pattern of astrocytes, whereas serum and CSF of the other patient were negative and showed neither reactivity to brain tissue nor to vital or permeabilized astrocytes. Neuropathologic examination of the anti-GFAP AB-negative patient revealed infiltration of macrophages and T cells around blood vessels and activation of microglia without obvious features of clasmatodendrosis. CONCLUSIONS: The GFAP-AB negative patient had both a striking (para)clinical similarity and an immediate response to immunotherapy. This supports the hypothesis that the clinical spectrum of steroid-responsive meningoencephalomyelitis suggestive of autoimmune GFAP astrocytopathy may be broader and may comprise also seronegative cases.


Assuntos
Astrócitos/patologia , Autoanticorpos/metabolismo , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Encefalite/diagnóstico , Proteína Glial Fibrilar Ácida/imunologia , Sistema Glinfático/diagnóstico por imagem , Animais , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Encefalite/tratamento farmacológico , Encefalite/imunologia , Encefalite/metabolismo , Glucocorticoides/administração & dosagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Metilprednisolona/administração & dosagem , Camundongos , Pessoa de Meia-Idade , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA