Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32976075

RESUMO

For the past 30 years, the most predominant strawberry cultivar in Taiwan has been 'Taoyuan No. 1', which produces fruit with rich flavor and aroma but is highly susceptible to anthracnose (Chung et al. 2019). Because epidemics of anthracnose became more destructive, farmers switched to an anthracnose-tolerant cultivar 'Xiang-Shui' (~50% and ~80% of the cultivation area in 2018 and 2019, respectively). Since 2018, severe leaf blight and crown rot symptoms have been observed all year in 'Xiang-Shui' in Miaoli, Nantou, Hsinchu, Taipei, Taoyuan, and Chiayi Counties. The disease became more prevalent and severe during 2019 to 2020 and caused up to 30% plant loss after transplanting. Symptoms appeared as brown necrotic lesions with black acervuli on leaves, slightly sunken dark-brown necrosis on stolons, and sunken reddish-brown necrosis on fruit. The diseased crown tissue showed marbled reddish-brown necrosis with a dark-brown margin, and plants with severe crown rot usually showed reddish-brown discoloration on leaves (the leaves initially turned reddish-brown between the veins and could become entirely scorched at later stages). To isolate the causal agent, small fragments of diseased leaves, crowns, stolons, and fruits were surface-disinfested with 0.5% sodium hypochlorite for 30 seconds, rinsed with sterile water then placed on 1.5% water agar. Single hyphal tips extended from tissues were transferred to potato dextrose agar and cultured for 7 days at 25°C under a 12-h/12-h photoperiod. Total 20 isolates were obtained from diseased leaves, crowns, stolons, and fruits. Colonies were white with cottony aerial mycelium, irregular margins, and black acervuli distributed in concentric rings. Conidia were fusiform to ellipsoid (five cells) with one basal appendage and three or four (usually three) apical appendages. From colony and conidial morphology, the causal agent was identified as Neopestalotiopsis sp. (Maharachchikumbura et al. 2014). The internal transcribed spacer (ITS) region, ß-tubulin (TUB), and translation elongation factor 1-alpha (TEF-1α) of three isolates (ML1664 from diseased crown tissue collected in Hsinchu County; ML2147 and ML2411 from diseased leaves collected in Miaoli County) were sequenced (GenBank nos. MT469940 to MT469948). All three isolates clustered with the ex-type strain of Neopestalotiopsis rosae in the multilocus (ITS+TUB+TEF-1α) phylogenetic tree. To fulfill Koch's postulates, spore suspensions of ML1664 and ML2147 at 1×106 conidia/mL were used to spray-inoculate 'Xiang-Shui' seedlings at the 3 to 4 leaf stage until run-off (two trials, five seedlings per trial). Inoculated plants were put in a plastic bag (> 90% RH) at 25°C under a 12-h/12-h photoperiod. After 10-14 days, 80% of inoculated plants showed leaf or crown symptoms similar to those in the field. Control plants sprayed with sterile water showed no symptoms (4-5 seedlings per trial). The fungi were re-isolated from necrotic lesions with 100% frequency (n ≥ 3 isolates per trial), and morphological characters and ITS sequences were identical to the original ones. This is the first report of N. rosae causing leaf blight and crown rot in strawberry in Taiwan. N. rosae and N. clavispora have been reported as new threats to strawberry in several other countries (Rebollar-Alviter 2020; Gilardi 2019). Clarification of the pathogen provides a basis for developing strategies to control the emerging disease. Further studies are needed to evaluate the resistance/susceptibility of major strawberry cultivars and the fungicide sensitivity of the pathogen.

2.
Plant Dis ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107797

RESUMO

Angular leaf spot of strawberry, considered an A2 quarantine pest by the European and Mediterranean Plant Protection Organization (EPPO 2019), is an important bacterial disease in many regions. Since 2017, symptoms similar to angular leaf spot were observed in several strawberry cultivars including 'Taoyuan No. 1' and 'Xiang-Shui'. Early symptoms were angular, water-soaked lesions on the abaxial leaf surface, and later, reddish-brown irregular spots and coalesced lesions developed on the adaxial surface. In the humid conditions, sticky bacterial ooze exuding from lesions was observed. To isolate the causal agent, leaves showing water-soaked lesions were surface sterilized, cut into small pieces and soaked in 5 ml sterile water for at least 15 min. The supernatant from the cut-up pieces was serially diluted followed by spreading on sucrose peptone agar (SPA) (Hayward 1960). After incubating at 20°C for 4-5 days, single colonies grown on SPA were transferred to a new SPA plate and cultured at 20°C until colonies appeared. The yellow, glossy and mucoid colonies, which resembled the colony morphology of Xanthomonas fragariae, were selected as candidates for further confirmation. First, bacterial DNA of four candidate isolates, B001, B003 and B005 from Miaoli County and B004 from Taoyuan City, was PCR amplified with X. fragariae-specific primers: XF9/XF12 (Roberts et al. 1996) and 245A/B and 295A/B (Pooler et al. 1996). All four isolates could be detected by XF9/XF12 primer. Furthermore, isolates B003 and B004 could be detected by both 245A/B and 295A/B primers, while B001 and B005 could be detected by 295A/B only. Next, DNA gyrase subunit B (gyrB) was PCR amplified with the primers XgyrB1F/XgyrB1R (Young et al. 2008). The gyrB sequences of these four isolates were deposited in GenBank with accession numbers MT754942 to MT754945. The gyrB phylogenetic tree was constructed based on Bayesian inference analysis and maximum likelihood analysis. The gyrB sequences of the four isolates from Taiwan clustered in the clade containing the type strain of X. fragariae ICMP5715, indicating that they belong to X. fragariae. B001 and B005 formed a sub-group separated from B003 and B004, suggesting genetic differences between these isolates. To fulfill Koch's postulates, the abaxial surface of strawberry leaves were syringe infiltrated (KJP Silva et al., 2017) or wounded inoculated (Wang et al., 2017) with bacterial suspensions (final OD600 = 1.0-2.0) prepared from colonies of B001 and B003 washed from SPA plates. Inoculated plants were enclosed in a plastic bag (> 90% RH) at 25/20°C (day/night) under a 12-h/12-h photoperiod. After 7-14 days, water-soaked lesions similar to those observed in the field were developed on all inoculated leaves. The bacteria were successfully re-isolated from lesions of inoculated leaves and confirmed by specific primers XF9/XF12, 245A/B and 295A/B. We also found that the disease commonly occurs in the strawberry fields/nurseries with sprinkler irrigation during winter or early spring, and was particularly serious in the windward side or near riverside. To our knowledge, this is the first report of X. fragariae causing angular leaf spot on strawberry in Taiwan. Currently, the disease only occurs severely in certain regions, but establishment of effective management strategies will be needed to prevent spreading of this disease and potential economic loss in the future.

4.
PLoS One ; 17(6): e0270687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35763511

RESUMO

Anthracnose is a major disease of strawberry that seriously impacts the strawberry industry. To prevent the spread of anthracnose through symptomless plants, it is important to detect pathogenic Colletotrichum spp. at the latent infection stage in the nursery. Previous PCR-based methods developed for the diagnosis or detection of Colletotrichum acutatum and Colletotrichum gloeosporioides have used primers targeting the internal transcribed spacer region of ribosomal DNA, ß-tubulin gene, or mating type gene. In this study, to specifically detect Colletotrichum siamense and Colletotrichum fructicola, the most predominant and virulent Colletotrichum species causing strawberry anthracnose in Taiwan, we conducted a comparative genomics analysis of 29 Colletotrichum spp. and identified a non-conserved 1157-bp intergenic region suitable for designing specific primers for a nested PCR assay. In silico analysis and actual tests suggested that the new nested PCR assay could detect pathogenic C. siamense and C. fructicola, but not other strawberry pathogens (Botrytis sp., Fusarium spp., Neopestalotiopsis rosae, and Phytophthora sp.) or ubiquitous saprophytes (Fusarium spp. and Trichoderma spp.). The inner to outer primer ratio was optimized to 1:10 to eliminate unexpected bands and enhance the signal. The assay could detect as little as 1 pg of C. siamense genomic DNA, which corresponds to ~15 cells. Application of the new detection assay on 747 leaf samples collected from 18 strawberry nurseries in 2019 and 2020 showed that an average of 20% of strawberry mother plants in Taiwan were latently infected by C. siamense or C. fructicola. The newly developed assay is being applied to facilitate the production of healthy strawberry runner plants in Taiwan.


Assuntos
Colletotrichum , Fragaria , Colletotrichum/genética , Reação em Cadeia da Polimerase
5.
Plants (Basel) ; 10(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375537

RESUMO

The strawberry (Fragaria × ananassa Duch.) is a high-value crop with an annual cultivated area of ~500 ha in Taiwan. Over 90% of strawberry cultivation is in Miaoli County. Unfortunately, various diseases significantly decrease strawberry production. The leaf and fruit disease became an epidemic in 1986. From 2010 to 2016, anthracnose crown rot caused the loss of 30-40% of seedlings and ~20% of plants after transplanting. The automation of agriculture and image recognition techniques are indispensable for detecting strawberry diseases. We developed an image recognition technique for the detection of strawberry diseases using a convolutional neural network (CNN) model. CNN is a powerful deep learning approach that has been used to enhance image recognition. In the proposed technique, two different datasets containing the original and feature images are used for detecting the following strawberry diseases-leaf blight, gray mold, and powdery mildew. Specifically, leaf blight may affect the crown, leaf, and fruit and show different symptoms. By using the ResNet50 model with a training period of 20 epochs for 1306 feature images, the proposed CNN model achieves a classification accuracy rate of 100% for leaf blight cases affecting the crown, leaf, and fruit; 98% for gray mold cases, and 98% for powdery mildew cases. In 20 epochs, the accuracy rate of 99.60% obtained from the feature image dataset was higher than that of 1.53% obtained from the original one. This proposed model provides a simple, reliable, and cost-effective technique for detecting strawberry diseases.

6.
Sci Rep ; 10(1): 14664, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887909

RESUMO

Strawberry is a small fruit crop with high economic value. Anthracnose caused by Colletotrichum spp. poses a serious threat to strawberry production, particularly in warm and humid climates, but knowledge of pathogen populations in tropical and subtropical regions is limited. To investigate the diversity of infectious agents causing strawberry anthracnose in Taiwan, a disease survey was conducted from 2010 to 2018, and Colletotrichum spp. were identified through morphological characterization and multilocus phylogenetic analysis with internal transcribed spacer, glyceraldehyde 3-phosphate dehydrogenase, chitin synthase, actin, beta-tubulin, calmodulin, and the intergenic region between Apn2 and MAT1-2-1 (ApMAT). Among 52 isolates collected from 24 farms/nurseries in Taiwan, a new species, Colletotrichum miaoliense sp. nov. (6% of all isolates), a species not previously known to be associated with strawberry, Colletotrichum karstii (6%), and three known species, Colletotrichum siamense (75%), Colletotrichum fructicola (11%), and Colletotrichum boninense (2%), were identified. The predominant species C. siamense and C. fructicola exhibited higher mycelial growth rates on potato dextrose agar and caused larger lesions on wounded and non-wounded detached strawberry leaves. Colletotrichum boninense, C. karstii, and C. miaoliense only caused lesions on wounded leaves. Understanding the composition and biology of the pathogen population will help in disease management and resistance breeding.


Assuntos
Colletotrichum/genética , Colletotrichum/patogenicidade , Fragaria/microbiologia , Frutas/microbiologia , Variação Genética , Doenças das Plantas/microbiologia , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Genes Fúngicos , Filogenia , Folhas de Planta/microbiologia , Taiwan , Virulência
7.
J Bacteriol ; 190(8): 2841-50, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18263727

RESUMO

Agrobacterium tumefaciens is a plant-pathogenic bacterium capable of secreting several virulence factors into extracellular space or the host cell. In this study, we used shotgun proteomics analysis to investigate the secretome of A. tumefaciens, which resulted in identification of 12 proteins, including 1 known secretory protein (VirB1*) and 11 potential secretory proteins. Interestingly, one unknown protein, which we designated hemolysin-coregulated protein (Hcp), is a predicted soluble protein without a recognizable N-terminal signal peptide. Western blot analysis revealed that A. tumefaciens Hcp is expressed and secreted when cells are grown in both minimal and rich media. Further biochemical and immunoelectron microscopy analysis demonstrated that intracellular Hcp is localized mainly in the cytosol, with a small portion in the membrane system. To investigate the mechanism of secretion of Hcp in A. tumefaciens, we generated mutants with deletions of a conserved gene, icmF, or the entire putative operon encoding a recently identified type VI secretion system (T6SS). Western blot analysis indicated that Hcp was expressed but not secreted into the culture medium in mutants with deletions of icmF or the t6ss operon. The secretion deficiency of Hcp in the icmF mutant was complemented by heterologous trans expression of icmF, suggesting that icmF is required for Hcp secretion. In tumor assays with potato tuber disks, deletion of hcp resulted in approximately 20 to 30% reductions in tumorigenesis efficiency, while no consistent difference was observed when icmF or the t6ss operon was deleted. These results increase our understanding of the conserved T6SS used by both plant- and animal-pathogenic bacteria.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Proteoma/análise , Solanum tuberosum/microbiologia , Agrobacterium tumefaciens/química , Proteínas de Bactérias/genética , Western Blotting , Membrana Celular/química , Citosol/química , Deleção de Genes , Teste de Complementação Genética , Microscopia Imunoeletrônica , Óperon , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA