Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Microbe ; 5(3): e226-e234, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38387472

RESUMO

BACKGROUND: Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. METHODS: We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. FINDINGS: From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8-7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4-10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. INTERPRETATION: We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, and National Institute for Health and Care Research (UK).


Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Humanos , Masculino , Feminino , Criança , Salmonella typhi/genética , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Febre Tifoide/tratamento farmacológico , Febre Tifoide/epidemiologia , Malaui/epidemiologia , Filogenia
2.
Lancet Microbe ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38996496

RESUMO

BACKGROUND: Enteric fever is a serious public health concern. The causative agents, Salmonella enterica serovars Typhi and Paratyphi A, frequently have antimicrobial resistance (AMR), leading to limited treatment options and poorer clinical outcomes. We investigated the genomic epidemiology, resistance mechanisms, and transmission dynamics of these pathogens at three urban sites in Africa and Asia. METHODS: S Typhi and S Paratyphi A bacteria isolated from blood cultures of febrile children and adults at study sites in Dhaka (Bangladesh), Kathmandu (Nepal), and Blantyre (Malawi) during STRATAA surveillance were sequenced. Isolates were charactered in terms of their serotypes, genotypes (according to GenoTyphi and Paratype), molecular determinants of AMR, and population structure. We used phylogenomic analyses incorporating globally representative genomic data from previously published surveillance studies and ancestral state reconstruction to differentiate locally circulating from imported pathogen AMR variants. Clusters of sequences without any single-nucleotide variants in their core genome were identified and used to explore spatiotemporal patterns and transmission dynamics. FINDINGS: We sequenced 731 genomes from isolates obtained during surveillance across the three sites between Oct 1, 2016, and Aug 31, 2019 (24 months in Dhaka and Kathmandu and 34 months in Blantyre). S Paratyphi A was present in Dhaka and Kathmandu but not Blantyre. S Typhi genotype 4.3.1 (H58) was common in all sites, but with different dominant variants (4.3.1.1.EA1 in Blantyre, 4.3.1.1 in Dhaka, and 4.3.1.2 in Kathmandu). Multidrug resistance (ie, resistance to chloramphenicol, co-trimoxazole, and ampicillin) was common in Blantyre (138 [98%] of 141 cases) and Dhaka (143 [32%] of 452), but absent from Kathmandu. Quinolone-resistance mutations were common in Dhaka (451 [>99%] of 452) and Kathmandu (123 [89%] of 138), but not in Blantyre (three [2%] of 141). Azithromycin-resistance mutations in acrB were rare, appearing only in Dhaka (five [1%] of 452). Phylogenetic analyses showed that most cases derived from pre-existing, locally established pathogen variants; 702 (98%) of 713 drug-resistant infections resulted from local circulation of AMR variants, not imported variants or recent de novo emergence; and pathogen variants circulated across age groups. 479 (66%) of 731 cases clustered with others that were indistinguishable by point mutations; individual clusters included multiple age groups and persisted for up to 2·3 years, and AMR determinants were invariant within clusters. INTERPRETATION: Enteric fever was associated with locally established pathogen variants that circulate across age groups. AMR infections resulted from local transmission of resistant strains. These results form a baseline against which to monitor the impacts of control measures. FUNDING: Wellcome Trust, Bill & Melinda Gates Foundation, EU Horizon 2020, and UK National Institute for Health and Care Research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA