Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hum Mol Genet ; 33(16): 1454-1464, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38751339

RESUMO

Speckled Protein 140 (SP140) is a chromatin reader with critical roles regulating immune cell transcriptional programs, and SP140 splice variants are associated with immune diseases including Crohn's disease, multiple sclerosis, and chronic lymphocytic leukemia. SP140 expression is currently thought to be restricted to immune cells. However, by analyzing human transcriptomic datasets from a wide range of normal and cancer cell types, we found recurrent cancer-specific expression of SP140, driven by an alternative intronic promoter derived from an intronic endogenous retrovirus (ERV). The ERV belongs to the primate-specific LTR8B family and is regulated by oncogenic mitogen-activated protein kinase (MAPK) signaling. The ERV drives expression of multiple cancer-specific isoforms, including a nearly full-length isoform that retains all the functional domains of the full-length canonical isoform and is also localized within the nucleus, consistent with a role in chromatin regulation. In a fibrosarcoma cell line, silencing the cancer-specific ERV promoter of SP140 resulted in increased sensitivity to interferon-mediated cytotoxicity and dysregulation of multiple genes. Our findings implicate aberrant ERV-mediated SP140 expression as a novel mechanism contributing to immune gene dysregulation in a wide range of cancer cells.


Assuntos
Retrovirus Endógenos , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , Humanos , Retrovirus Endógenos/genética , Regiões Promotoras Genéticas/genética , Linhagem Celular Tumoral , Isoformas de Proteínas/genética , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/virologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
2.
Immunol Rev ; 305(1): 165-178, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34816452

RESUMO

In recent years, there has been significant progress toward understanding the transcriptional networks underlying mammalian immune responses, fueled by advances in regulatory genomic technologies. Epigenomic studies profiling immune cells have generated detailed genome-wide maps of regulatory elements that will be key to deciphering the regulatory networks underlying cellular immune responses and autoimmune disorders. Unbiased analyses of these genomic maps have uncovered endogenous retroviruses as an unexpected ally in the regulation of human immune systems. Despite their parasitic origins, studies are finding an increasing number of examples of retroviral sequences having been co-opted for beneficial immune function and regulation by the host cell. Here, we review how endogenous retroviruses have given rise to numerous regulatory elements that shape the epigenetic landscape of host immune responses. We will discuss the implications of these elements on the function, dysfunction, and evolution of innate immunity.


Assuntos
Retrovirus Endógenos , Animais , Retrovirus Endógenos/genética , Epigênese Genética , Humanos , Imunidade Inata/genética , Mamíferos/genética
3.
Genome Res ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948370

RESUMO

Cattle are an important livestock species, and mapping the genomic architecture of agriculturally relevant traits such as disease susceptibility is a major challenge in the bovine research community. Lineage-specific transposable elements (TEs) are increasingly recognized to contribute to gene regulatory evolution and variation, but this possibility has been largely unexplored in ruminant genomes. We conducted epigenomic profiling of the type II interferon (IFN) response in bovine cells and found thousands of ruminant-specific TEs including MER41_BT and Bov-A2 elements predicted to act as IFN-inducible enhancer elements. CRISPR knockout experiments in bovine cells established that critical immune factors including IFNAR2 and IL2RB are transcriptionally regulated by TE-derived enhancers. Finally, population genomic analysis of 38 individuals revealed that a subset of polymorphic TE insertions may function as enhancers in modern cattle. Our study reveals that lineage-specific TEs have shaped the evolution of ruminant IFN responses and potentially continue to contribute to immune gene regulatory differences across modern breeds and individuals. Together with previous work in human cells, our findings demonstrate that lineage-specific TEs have been independently co-opted to regulate IFN-inducible gene expression in multiple species, supporting TE co-option as a recurrent mechanism driving the evolution of IFN-inducible transcriptional networks.

4.
Genome Res ; 32(6): 1058-1073, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35649579

RESUMO

Understanding how regulatory mechanisms evolve is critical for understanding the processes that give rise to novel phenotypes. Snake venom systems represent a valuable and tractable model for testing hypotheses related to the evolution of novel regulatory networks, yet the regulatory mechanisms underlying venom production remain poorly understood. Here, we use functional genomics approaches to investigate venom regulatory architecture in the prairie rattlesnake and identify cis-regulatory sequences (enhancers and promoters), trans-regulatory transcription factors, and integrated signaling cascades involved in the regulation of snake venom genes. We find evidence that two conserved vertebrate pathways, the extracellular signal-regulated kinase and unfolded protein response pathways, were co-opted to regulate snake venom. In one large venom gene family (snake venom serine proteases), this co-option was likely facilitated by the activity of transposable elements. Patterns of snake venom gene enhancer conservation, in some cases spanning 50 million yr of lineage divergence, highlight early origins and subsequent lineage-specific adaptations that have accompanied the evolution of venom regulatory architecture. We also identify features of chromatin structure involved in venom regulation, including topologically associated domains and CTCF loops that underscore the potential importance of novel chromatin structure to coevolve when duplicated genes evolve new regulatory control. Our findings provide a model for understanding how novel regulatory systems may evolve through a combination of genomic processes, including tandem duplication of genes and regulatory sequences, cis-regulatory sequence seeding by transposable elements, and diverse transcriptional regulatory proteins controlled by a co-opted regulatory cascade.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Animais , Cromatina/genética , Crotalus/genética , Expressão Gênica , Venenos de Serpentes/genética
5.
Nat Rev Genet ; 18(2): 71-86, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27867194

RESUMO

Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor-binding sites and non-coding RNAs. Many recent studies reinvigorate the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and the conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalysed the evolution of gene-regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic effect of regulatory activities encoded by TEs in health and disease.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Redes Reguladoras de Genes , Animais , Humanos
6.
PLoS Biol ; 16(10): e3000028, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30300353

RESUMO

The co-option of endogenous retroviruses (ERVs) is increasingly recognized as a recurrent theme in placental biology, which has far-reaching implications for our understanding of mammalian evolution and reproductive health. Most research in this area has focused on ERV-derived proteins, which have been repeatedly co-opted to promote cell-cell fusion and immune modulation in the placenta. ERVs also harbor regulatory sequences that can potentially control placental gene expression, but there has been limited evidence to support this role. In a recent study, Dunn-Fletcher and colleagues discover a striking example of an ERV-derived enhancer element that has been co-opted to regulate a gene important for human pregnancy. Using genomic and experimental approaches, they firmly establish that a primate-specific ERV functions as a placenta-specific enhancer for corticotropin-releasing hormone (CRH), a hormone linked to the control of birth timing in humans. Their findings implicate an extensive yet understudied role for retroviruses in shaping the evolution of placental gene regulatory networks.


Assuntos
Hormônio Liberador da Corticotropina , Retrovirus Endógenos , Animais , Feminino , Haplorrinos , Humanos , Placenta , Gravidez , Primatas
7.
Proc Natl Acad Sci U S A ; 113(34): 9575-80, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506791

RESUMO

The yeast HO endonuclease is expressed in late G1 in haploid mother cells to initiate mating-type interconversion. Cells can be arrested in G1 by nutrient deprivation or by pheromone exposure, but cells that resume cycling after nutrient deprivation or cyclin-dependent kinase (CDK) inactivation express HO in the first cell cycle, whereas HO is not expressed until the second cycle after release from pheromone arrest. Here, we show that transcription of a long noncoding RNA (lncRNA) mediates this differential response. The SBF and Mediator factors remain bound to the inactive promoter during arrest due to CDK inactivation, and these bound factors allow the cell to remember a transcriptional decision made before arrest. If the presence of mating pheromone indicates that this decision is no longer appropriate, a lncRNA originating at -2700 upstream of the HO gene is induced, and the transcription machinery displaces promoter-bound SBF, preventing HO transcription in the subsequent cell cycle. Further, we find that the displaced SBF is blocked from rebinding due to incorporation of its recognition sites within nucleosomes. Expressing the pHO-lncRNA in trans is ineffective, indicating that transcription in cis is required. Factor displacement during lncRNA transcription could be a general mechanism for regulating memory of previous events at promoters.


Assuntos
Endonucleases/genética , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , RNA Fúngico/genética , RNA Longo não Codificante/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , Sítios de Ligação , Endonucleases/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Complexo Mediador/genética , Complexo Mediador/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , RNA Fúngico/biossíntese , RNA Longo não Codificante/biossíntese , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
PLoS Genet ; 10(5): e1004290, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24785991

RESUMO

Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000 N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Placenta/metabolismo , Animais , Adesão Celular/genética , Diferenciação Celular/genética , Feminino , Deleção de Genes , Humanos , Neurogênese , Poliploidia , Gravidez , Processos Estocásticos
9.
Bioessays ; 35(10): 853-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23873343

RESUMO

The mammalian placenta exhibits elevated expression of endogenous retroviruses (ERVs), but the evolutionary significance of this feature remains unclear. I propose that ERV-mediated regulatory evolution was, and continues to be, an important mechanism underlying the evolution of placental development. Many recent studies have focused on the co-option of ERV-derived genes for specific functional adaptations in the placenta. However, the co-option of ERV-derived regulatory elements could potentially lead to the incorporation of entire gene regulatory networks, which, I argue, would facilitate relatively rapid developmental evolution of the placenta. I suggest a model in which an ancient retroviral infection led to the establishment of the ancestral placental developmental gene network through the co-option of ERV-derived regulatory elements. Consequently, placental development would require elevated tolerance to ERV activity. This in turn would expose a continuous stream of novel ERV mutations that may have catalyzed the developmental diversification of the mammalian placenta.


Assuntos
Retrovirus Endógenos/genética , Evolução Molecular , Placenta/fisiologia , Sequências Reguladoras de Ácido Nucleico , Animais , Elementos Facilitadores Genéticos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mamíferos/genética , Mutação , Gravidez , Sequências Repetidas Terminais , Trofoblastos/fisiologia
10.
Sci Adv ; 10(29): eado1218, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018396

RESUMO

Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.


Assuntos
Neoplasias Colorretais , Retrovirus Endógenos , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/virologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Retrovirus Endógenos/genética , Elementos Facilitadores Genéticos , Linhagem Celular Tumoral , Transcrição Gênica , Animais , Carcinogênese/genética , Redes Reguladoras de Genes
11.
Oncogene ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448867

RESUMO

Rhabdomyosarcoma (RMS), a malignancy of impaired myogenic differentiation, is the most common soft tissue pediatric cancer. PAX3-FOXO1 oncofusions drive the majority of the clinically more aggressive fusion-positive rhabdomyosarcoma (FP-RMS). Recent studies have established an epigenetic basis for PAX3-FOXO1-driven oncogenic processes. However, details of PAX3-FOXO1 epigenetic mechanisms, including interactions with, and dependence on, other chromatin and transcription factors, are incompletely understood. We previously identified a novel disease-promoting epigenetic axis in RMS, involving the histone demethylase KDM3A and the ETS1 transcription factor, and demonstrated that this epigenetic axis interfaces with PAX3-FOXO1 both phenotypically and transcriptomically, including co-regulation of biological processes and genes important to FP-RMS progression. In this study, we demonstrate that KDM3A and ETS1 colocalize with PAX3-FOXO1 to enhancers of important disease-promoting genes in FP-RMS, including FGF8, IL4R, and MEST, as well as PODXL, which we define herein as a new FP-RMS-promoting gene. We show that ETS1, which is induced by both PAX3-FOXO1 and KDM3A, exists in complex with PAX3-FOXO1, and augments PAX3-FOXO1 chromatin occupancy. We further show that the PAX3-FOXO1/ETS1 complex can be disrupted by the clinically relevant small molecule inhibitor YK-4-279. YK-4-279 displaces PAX3-FOXO1 from chromatin and interferes with PAX3-FOXO1-dependent gene regulation, resulting in potent inhibition of growth and invasive properties in FP-RMS, along with downregulation of FGF8, IL4R, MEST and PODXL expression. We additionally show that, in some FP-RMS, KDM3A also increases PAX3-FOXO1 levels. Together, our studies illuminate mechanisms of action of the KDM3A/ETS1 regulatory module, and reveal novel targetable mechanisms of PAX3-FOXO1 chromatin complex regulation, in FP-RMS.

12.
Mol Cancer Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136655

RESUMO

Poly ADP-ribose polymerase inhibitors (PARPi) are first-line maintenance therapy for ovarian cancer and an alternative therapy for several other cancer types. However, PARPi-resistance is rising and there is currently an unmet need to combat PARPi-resistant tumors. Here, we created an immunocompetent, PARPi-resistant mouse model to test the efficacy of combinatory PARPi and euchromatic histone methyltransferase 1/2 inhibitor (EHMTi) in the treatment of PARPi-resistant ovarian cancer. We discovered that inhibition of EHMT1/2 resensitizes cells to PARPi. Markedly, we show that single EHMTi and combinatory EHMTi/PARPi significantly reduced PARPi-resistant tumor burden and that this reduction is partially dependent on CD8 T cells. Altogether, our results show a low-toxicity drug that effectively treats PARPi-resistant ovarian cancer in an immune-dependent manner, supporting its entry into clinical development and potential incorporation of immunotherapy. Implications: Targeting the epigenome of therapy-resistant ovarian cancer induces an anti-tumor response mediated in part through an anti-tumor immune response.

13.
Mol Cancer Ther ; : OF1-OF16, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863225

RESUMO

Despite the success of poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory double-stranded RNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T-cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi-resistant ovarian tumor growth in vivo, and promotes antitumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.

14.
Mol Cancer Ther ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714351

RESUMO

Despite the success of Poly-ADP-ribose polymerase inhibitors (PARPi) in the clinic, high rates of resistance to PARPi presents a challenge in the treatment of ovarian cancer, thus it is imperative to find therapeutic strategies to combat PARPi resistance. Here, we demonstrate that inhibition of epigenetic modifiers Euchromatic histone lysine methyltransferases 1/2 (EHMT1/2) reduces the growth of multiple PARPi-resistant ovarian cancer cell lines and tumor growth in a PARPi-resistant mouse model of ovarian cancer. We found that combinatory EHMT and PARP inhibition increases immunostimulatory dsRNA formation and elicits several immune signaling pathways in vitro. Using epigenomic profiling and transcriptomics, we found that EHMT2 is bound to transposable elements, and that EHMT inhibition leads to genome-wide epigenetic and transcriptional derepression of transposable elements. We validated EHMT-mediated activation of immune signaling and upregulation of transposable element transcripts in patient-derived, therapy-naïve, primary ovarian tumors, suggesting potential efficacy in PARPi-sensitive disease as well. Importantly, using multispectral immunohistochemistry, we discovered that combinatory therapy increased CD8 T cell activity in the tumor microenvironment of the same patient-derived tissues. In a PARPi-resistant syngeneic murine model, EHMT and PARP inhibition combination inhibited tumor progression and increased Granzyme B+ cells in the tumor. Together, our results provide evidence that combinatory EHMT and PARP inhibition stimulates a cell autologous immune response in vitro, is an effective therapy to reduce PARPi resistant ovarian tumor growth in vivo, and promotes anti-tumor immunity activity in the tumor microenvironment of patient-derived ex vivo tissues of ovarian cancer.

15.
Methods Mol Biol ; 2607: 369-379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36449171

RESUMO

Transposable elements (TEs) are abundant in the genome, and specific insertions may be co-opted to act as coding or noncoding functional elements. CRISPR-based genome editing technologies enable functional studies of TE insertions in cell lines. Here, we describe the use of CRISPR-Cas9 to create and validate genetic knockouts of TEs in mammalian cell lines.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes , Linhagem Celular , Elementos de DNA Transponíveis/genética , Mamíferos
16.
Mob DNA ; 14(1): 20, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037122

RESUMO

BACKGROUND: Despite their origins as selfish parasitic sequences, some transposons in the human genome have been co-opted to serve as regulatory elements, contributing to the evolution of transcriptional networks. Most well-characterized examples of transposon-derived regulatory elements derive from endogenous retroviruses (ERVs), due to the intrinsic regulatory activity of proviral long terminal repeat regions. However, one subclass of transposable elements, the Long Interspersed Nuclear Elements (LINEs), have been largely overlooked in the search for functional regulatory transposons, and considered to be broadly epigenetically repressed. RESULTS: We examined the chromatin state of LINEs by analyzing epigenomic data from human immune cells. Many LINEs are marked by the repressive H3K9me3 modification, but a subset exhibits evidence of enhancer activity in human immune cells despite also showing evidence of epigenetic repression. We hypothesized that these competing forces of repressive and activating epigenetic marks might lead to inducible enhancer activity. We investigated a specific L1M2a element located within the first intron of Interferon Alpha/Beta Receptor 1 (IFNAR1). This element shows epigenetic signatures of B cell-specific enhancer activity, despite being repressed by the Human Silencing Hub (HUSH) complex. CRISPR deletion of the element in B lymphoblastoid cells revealed that the element acts as an enhancer that regulates both steady state and interferon-inducible expression of IFNAR1. CONCLUSIONS: Our study experimentally demonstrates that an L1M2a element was co-opted to function as an interferon-inducible enhancer of IFNAR1, creating a feedback loop wherein IFNAR1 is transcriptionally upregulated by interferon signaling. This finding suggests that other LINEs may exhibit cryptic cell type-specific or context-dependent enhancer activity. LINEs have received less attention than ERVs in the effort to understand the contribution of transposons to the regulatory landscape of cellular genomes, but these are likely important, lineage-specific players in the rapid evolution of immune system regulatory networks and deserve further study.

17.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158599

RESUMO

Regulatory networks underlying innate immunity continually face selective pressures to adapt to new and evolving pathogens. Transposable elements (TEs) can affect immune gene expression as a source of inducible regulatory elements, but the significance of these elements in facilitating evolutionary diversification of innate immunity remains largely unexplored. Here, we investigated the mouse epigenomic response to type II interferon (IFN) signaling and discovered that elements from a subfamily of B2 SINE (B2_Mm2) contain STAT1 binding sites and function as IFN-inducible enhancers. CRISPR deletion experiments in mouse cells demonstrated that a B2_Mm2 element has been co-opted as an enhancer driving IFN-inducible expression of Dicer1. The rodent-specific B2 SINE family is highly abundant in the mouse genome and elements have been previously characterized to exhibit promoter, insulator, and non-coding RNA activity. Our work establishes a new role for B2 elements as inducible enhancer elements that influence mouse immunity, and exemplifies how lineage-specific TEs can facilitate evolutionary turnover and divergence of innate immune regulatory networks.


Assuntos
Interferon gama , Sequências Reguladoras de Ácido Nucleico , Animais , Camundongos , Regiões Promotoras Genéticas , Interferon gama/genética , Evolução Biológica , Sítios de Ligação , Elementos de DNA Transponíveis , Elementos Facilitadores Genéticos/genética
18.
Mob DNA ; 14(1): 19, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012685

RESUMO

The conference "Transposable Elements at the Crossroads of Evolution, Health and Disease" was hosted by Keystone Symposia in Whistler, British Columbia, Canada, on September 3-6, 2023, and was organized by Kathleen Burns, Harmit Malik and Irina Arkhipova. The central theme of the meeting was the incredible diversity of ways in which transposable elements (TEs) interact with the host, from disrupting the existing genes and pathways to creating novel gene products and expression patterns, enhancing the repertoire of host functions, and ultimately driving host evolution. The meeting was organized into six plenary sessions and two afternoon workshops with a total of 50 invited and contributed talks, two poster sessions, and a career roundtable. The topics ranged from TE roles in normal and pathological processes to restricting and harnessing TE activity based on mechanistic insights gained from genetic, structural, and biochemical studies.

19.
Mol Cancer Res ; 21(1): 3-13, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36149636

RESUMO

High-grade serous ovarian cancer (HGSOC) is the deadliest ovarian cancer histotype due in-part to the lack of therapeutic options for chemotherapy-resistant disease. PARP inhibitors (PARPi) represent a targeted treatment. However, PARPi resistance is becoming a significant clinical challenge. There is an urgent need to overcome resistance mechanisms to extend disease-free intervals. We established isogeneic PARPi-sensitive and -resistant HGSOC cell lines. In three PARPi-resistant models, there is a significant increase in AP-1 transcriptional activity and DNA repair capacity. Using RNA-sequencing and an shRNA screen, we identified activating transcription factor 6 (ATF6) as a mediator of AP-1 activity, DNA damage response, and PARPi resistance. In publicly available datasets, ATF6 expression is elevated in HGSOC and portends a poorer recurrence-free survival. In a cohort of primary HGSOC tumors, higher ATF6 expression significantly correlated to PARPi resistance. In PARPi-resistant cell lines and a PDX model, inhibition of a known ATF6 regulator, p38, attenuated AP-1 activity and RAD51 foci formation, enhanced DNA damage, significantly inhibited tumor burden, and reduced accumulation of nuclear ATF6. IMPLICATIONS: This study highlights that a novel p38-ATF6-mediated AP-1 signaling axis contributes to PARPi resistance and provides a clinical rationale for combining PARPi and AP-1 signaling inhibitors.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Fator 6 Ativador da Transcrição/genética , Fator de Transcrição AP-1/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
20.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745311

RESUMO

Innate immune signaling is essential for clearing pathogens and damaged cells, and must be tightly regulated to avoid excessive inflammation or autoimmunity. Here, we found that the alternative splicing of exons derived from transposable elements is a key mechanism controlling immune signaling in human cells. By analyzing long-read transcriptome datasets, we identified numerous transposon exonization events predicted to generate functional protein variants of immune genes, including the type I interferon receptor IFNAR2. We demonstrated that the transposon-derived isoform of IFNAR2 is more highly expressed than the canonical isoform in almost all tissues, and functions as a decoy receptor that potently inhibits interferon signaling including in cells infected with SARS-CoV-2. Our findings uncover a primate-specific axis controlling interferon signaling and show how a transposon exonization event can be co-opted for immune regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA