Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 40(6): 1955-1968, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30618191

RESUMO

Dynamic functional network connectivity (dFNC) is an expansion of traditional, static FNC that measures connectivity variation among brain networks throughout scan duration. We used a large resting-state fMRI (rs-fMRI) sample from the PREDICT-HD study (N = 183 Huntington disease gene mutation carriers [HDgmc] and N = 78 healthy control [HC] participants) to examine whole-brain dFNC and its associations with CAG repeat length as well as the product of scaled CAG length and age, a variable representing disease burden. We also tested for relationships between functional connectivity and motor and cognitive measurements. Group independent component analysis was applied to rs-fMRI data to obtain whole-brain resting state networks. FNC was defined as the correlation between RSN time-courses. Dynamic FNC behavior was captured using a sliding time window approach, and FNC results from each window were assigned to four clusters representing FNC states, using a k-means clustering algorithm. HDgmc individuals spent significantly more time in State-1 (the state with the weakest FNC pattern) compared to HC. However, overall HC individuals showed more FNC dynamism than HDgmc. Significant associations between FNC states and genetic and clinical variables were also identified. In FNC State-4 (the one that most resembled static FNC), HDgmc exhibited significantly decreased connectivity between the putamen and medial prefrontal cortex compared to HC, and this was significantly associated with cognitive performance. In FNC State-1, disease burden in HDgmc participants was significantly associated with connectivity between the postcentral gyrus and posterior cingulate cortex, as well as between the inferior occipital gyrus and posterior parietal cortex.


Assuntos
Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Doença de Huntington/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
2.
J Int Neuropsychol Soc ; 25(5): 462-469, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30806337

RESUMO

OBJECTIVES: Apathy is a debilitating symptom of Huntington's disease (HD) and manifests before motor diagnosis, making it an excellent therapeutic target in the preclinical phase of Huntington's disease (prHD). HD is a neurological genetic disorder characterized by cognitive and motor impairment, and psychiatric abnormalities. Apathy is not well characterized within the prHD. In previous literature, damage to the caudate and putamen has been correlated with increased apathy in other neurodegenerative and movement disorders. The objective of this study was to determine whether apathy severity in individuals with prHD is related to striatum volumes and cognitive control. We hypothesized that, within prHD individuals, striatum volumes and cognitive control scores would be related to apathy. METHODS: We constructed linear mixed models to analyze striatum volumes and cognitive control, a composite measure that includes tasks assessing with apathy scores from 797 prHD participants. The outcome variable for each model was apathy, and the independent variables for the four separate models were caudate volume, putamen volume, cognitive control score, and motor symptom score. We also included depression as a covariate to ensure that our results were not solely related to mood. RESULTS: Caudate and putamen volumes, as well as measures of cognitive control, were significantly related to apathy scores even after controlling for depression. CONCLUSIONS: The behavioral apathy expressed by these individuals was related to regions of the brain commonly associated with isolated apathy, and not a direct result of mood symptoms. (JINS, 2019, 25, 462-469).


Assuntos
Apatia/fisiologia , Núcleo Caudado/patologia , Função Executiva/fisiologia , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Sintomas Prodrômicos , Putamen/patologia , Adulto , Núcleo Caudado/diagnóstico por imagem , Feminino , Humanos , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Putamen/diagnóstico por imagem
3.
J Huntingtons Dis ; 8(2): 199-219, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30932891

RESUMO

BACKGROUND: Gray matter (GM) atrophy in the striatum and across the brain is a consistently reported feature of the Huntington Disease (HD) prodrome. More recently, widespread prodromal white matter (WM) degradation has also been detected. However, longitudinal WM studies are limited and conflicting, and most analyses comparing WM and clinical functioning have also been cross-sectional. OBJECTIVE: We simultaneously assessed changes in WM and cognitive and motor functioning at various prodromal HD stages. METHODS: Data from 1,336 (1,047 prodromal, 289 control) PREDICT-HD participants were analyzed (3,700 sessions). MRI images were used to create GM, WM, and cerebrospinal fluid probability maps. Using source-based morphometry, independent component analysis was applied to WM probability maps to extract covarying spatial patterns and their subject profiles. WM profiles were analyzed in two sets of linear mixed model (LMM) analyses: one to compare WM profiles across groups cross-sectionally and longitudinally, and one to concurrently compare WM profiles and clinical variables cross-sectionally and longitudinally within each group. RESULTS: Findings illustrate widespread prodromal changes in GM-adjacent-WM, with premotor, supplementary motor, middle frontal and striatal changes early in the prodrome that subsequently extend sub-gyrally with progression. Motor functioning agreed most with WM until the near-onset prodromal stage, when Stroop interference was the best WM indicator. Across groups, Trail-Making Test part A outperformed other cognitive variables in its similarity to WM, particularly cross-sectionally. CONCLUSIONS: Results suggest that distinct regions coincide with cognitive compared to motor functioning. Furthermore, at different prodromal stages, distinct regions appear to align best with clinical functioning. Thus, the informativeness of clinical measures may vary according to the type of data available (cross-sectional or longitudinal) as well as age and CAG-number.


Assuntos
Encéfalo/patologia , Doença de Huntington/patologia , Sintomas Prodrômicos , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Estudos Transversais , Humanos , Doença de Huntington/diagnóstico por imagem , Estudos Longitudinais , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
4.
Brain Sci ; 8(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932126

RESUMO

This study assessed how BDNF (brain-derived neurotrophic factor) and other genes involved in its signaling influence brain structure and clinical functioning in pre-diagnosis Huntington's disease (HD). Parallel independent component analysis (pICA), a multivariate method for identifying correlated patterns in multimodal datasets, was applied to gray matter concentration (GMC) and genomic data from a sizeable PREDICT-HD prodromal cohort (N = 715). pICA identified a genetic component highlighting NTRK2, which encodes BDNF's TrkB receptor, that correlated with a GMC component including supplementary motor, precentral/premotor cortex, and other frontal areas (p < 0.001); this association appeared to be driven by participants with high or low levels of the genetic profile. The frontal GMC profile correlated with cognitive and motor variables (Trail Making Test A (p = 0.03); Stroop Color (p = 0.017); Stroop Interference (p = 0.04); Symbol Digit Modalities Test (p = 0.031); Total Motor Score (p = 0.01)). A top-weighted NTRK2 variant (rs2277193) was protectively associated with Trail Making Test B (p = 0.007); greater minor allele numbers were linked to a better performance. These results support the idea of a protective role of NTRK2 in prodromal HD, particularly in individuals with certain genotypes, and suggest that this gene may influence the preservation of frontal gray matter that is important for clinical functioning.

5.
Brain Connect ; 8(3): 166-178, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29291624

RESUMO

Huntington's disease (HD) is an inherited brain disorder characterized by progressive motor, cognitive, and behavioral dysfunctions. It is caused by abnormally large trinucleotide cytosine-adenine-guanine (CAG) repeat expansions on exon 1 of the Huntingtin gene. CAG repeat length (CAG-RL) inversely correlates with an earlier age of onset. Region-based studies have shown that HD gene mutation carrier (HDgmc) individuals (CAG-RL ≥36) present functional connectivity alterations in subcortical (SC) and default mode networks. In this analysis, we expand on previous HD studies by investigating associations between CAG-RL and connectivity in the whole brain, as well as between CAG-dependent connectivity and motor and cognitive performances. We used group-independent component analysis on resting-state functional magnetic resonance imaging scans of 261 individuals (183 HDgmc and 78 healthy controls) from the PREDICT-HD study, to obtain whole-brain resting state networks (RSNs). Regression analysis was applied within and between RSNs connectivity (functional network connectivity [FNC]) to identify CAG-RL associations. Connectivity within the putamen RSN is negatively correlated with CAG-RL. The FNC between putamen and insula decreases with increasing CAG-RL, and also shows significant associations with motor and cognitive measures. The FNC between calcarine and middle frontal gyri increased with CAG-RL. In contrast, FNC in other visual (VIS) networks declined with increasing CAG-RL. In addition to observed effects in SC areas known to be related to HD, our study identifies a strong presence of alterations in VIS regions less commonly observed in previous reports and provides a step forward in understanding FNC dysfunction in HDgmc.


Assuntos
Encéfalo/fisiopatologia , Conectoma/métodos , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Feminino , Heterozigoto , Humanos , Doença de Huntington/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
6.
Front Neurol ; 9: 190, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651271

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an expansion mutation of the cytosine-adenine-guanine (CAG) trinucleotide in the HTT gene. Decline in cognitive and motor functioning during the prodromal phase has been reported, and understanding genetic influences on prodromal disease progression beyond CAG will benefit intervention therapies. From a prodromal HD cohort (N = 715), we extracted gray matter (GM) components through independent component analysis and tested them for associations with cognitive and motor functioning that cannot be accounted for by CAG-induced disease burden (cumulative effects of CAG expansion and age). Furthermore, we examined genetic associations (at the genomic, HD pathway, and candidate region levels) with the GM components that were related to functional decline. After accounting for disease burden, GM in a component containing cuneus, lingual, and middle occipital regions was positively associated with attention and working memory performance, and the effect size was about a tenth of that of disease burden. Prodromal participants with at least one dystonia sign also had significantly lower GM volume in a bilateral inferior parietal component than participants without dystonia, after controlling for the disease burden. Two single-nucleotide polymorphisms (SNPs: rs71358386 in NCOR1 and rs71358386 in ADORA2B) in the HD pathway were significantly associated with GM volume in the cuneus component, with minor alleles being linked to reduced GM volume. Additionally, homozygous minor allele carriers of SNPs in a candidate region of ch15q13.3 had significantly higher GM volume in the inferior parietal component, and one minor allele copy was associated with a total motor score decrease of 0.14 U. Our findings depict an early genetical GM reduction in prodromal HD that occurs irrespective of disease burden and affects regions important for cognitive and motor functioning.

7.
Front Neurol ; 7: 147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708610

RESUMO

Huntington disease (HD) is caused by an abnormally expanded cytosine-adenine-guanine (CAG) trinucleotide repeat in the HTT gene. Age and CAG-expansion number are related to age at diagnosis and can be used to index disease progression. However, observed onset-age variability suggests that other factors also modulate progression. Indexing prodromal (pre-diagnosis) progression may highlight therapeutic targets by isolating the earliest-affected factors. We present the largest prodromal HD application of the univariate method voxel-based morphometry (VBM) and the first application of the multivariate method source-based morphometry (SBM) to, respectively, compare gray matter concentration (GMC) and capture co-occurring GMC patterns in control and prodromal participants. Using structural MRI data from 1050 (831 prodromal, 219 control) participants, we characterize control-prodromal, whole-brain GMC differences at various prodromal stages. Our results provide evidence for (1) regional co-occurrence and differential patterns of decline across the prodrome, with parietal and occipital differences commonly co-occurring, and frontal and temporal differences being relatively independent from one another, (2) fronto-striatal circuits being among the earliest and most consistently affected in the prodrome, (3) delayed degradation in some movement-related regions, with increasing subcortical and occipital differences with later progression, (4) an overall superior-to-inferior gradient of GMC reduction in frontal, parietal, and temporal lobes, and (5) the appropriateness of SBM for studying the prodromal HD population and its enhanced sensitivity to early prodromal and regionally concurrent differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA