RESUMO
High-Harmonic Generation (HHG) spectra of randomly aligned bromoform (CHBr3) molecules have been experimentally measured and theoretically simulated at various laser pulse intensities. From the experiments, we obtained a significant number of harmonics that goes beyond the cutoff limit predicted by the three-step model (3SM) with ionization from HOMO. To interpret the experiment, we resorted to real-time time-dependent configuration interaction with single excitations. We found that electronic bound states provide an appreciable contribution to the harmonics. More in detail, we analyzed the electron dynamics by decomposing the HHG signal in terms of single molecular-orbital contributions, to explain the appearance of harmonics around 20-30 eV beyond the expected cutoff due to HOMO. HHG spectra can be therefore explained by considering the contribution at high energy of HOMO-6 and HOMO-9, thus indicating a complex multiple-orbital strong-field dynamics. However, even though the presence of the bromoform cation should be not enough to produce such a signal, we could not exclude a priori that the origin of harmonics in the H29-H45 to be due to the cation, which has more energetic ionization channels.
RESUMO
The near-edge X-ray absorption fine structure (NEXAFS) spectra of indole, 2,3-dihydro-7-azaindole, and 3-formylindole in the gas phase have been measured at the carbon and nitrogen K-edges. The spectral features have been interpreted based on density functional theory (DFT) calculations within the transition potential (TP) scheme, which is accurate enough for a general description of the measured C 1s NEXAFS spectra as well as for the assignment of the most relevant features. For the nitrogen K-edge, the agreement between experimental data and theoretical spectra calculated with TP-DFT was not quite satisfactory. This discrepancy was mainly attributed to the many-body effects associated with the excitation of the core electron, which are better described using the time-dependent density functional theory (TDDFT) with the range-separated hybrid functional CAM-B3LYP. An assignment of the measured N 1s NEXAFS spectral features has been proposed together with a complete description of the observed resonances. Intense transitions from core levels to unoccupied antibonding π* states as well as several transitions with mixed-valence/Rydberg or pure Rydberg character have been observed in the C and N K-edge spectra of all investigated indoles.
RESUMO
The valence and core electronic structure of nicotine, nicotinic acid, and nicotinamide have been studied by photoelectron and soft X-ray absorption spectroscopy, supported by theoretical calculations, which take into account conformational isomerism. The core-level photoionization spectra of all molecules have been assigned, and theory indicates that the effects of conformational differences are small, generally less than the natural line widths of the core ionic states. However, in the case of nicotinamide, the theoretical valence ionization potentials of cis and trans conformers differ significantly in the outer valence space, and the experimental spectrum is in agreement with the calculated outer valence cis conformer spectrum. In addition, the C, N, and O K edge near-edge absorption fine structure spectra are reported and interpreted by comparison with reference compounds. We find evidence at the N and O K edges of interaction between the delocalized orbitals of the pyridine ring and the substituents for nicotinic acid and nicotinamide. The strength of the interaction varies because the first is planar, while the second is twisted, reducing the extent of orbital mixing.
RESUMO
The valence and core-level photoelectron spectra of gaseous indole, 2,3-dihydro-7-azaindole, and 3-formylindole have been investigated using VUV and soft X-ray radiation supported by both an ab initio electron propagator and density functional theory calculations. Three methods were used to calculate the outer valence band photoemission spectra: outer valence Green function, partial third order, and renormalized partial third order. While all gave an acceptable description of the valence spectra, the last method yielded very accurate agreement, especially for indole and 3-formylindole. The carbon, nitrogen, and oxygen 1s core-level spectra of these heterocycles were measured and assigned. The double ionization appearance potential for indole has been determined to be 21.8 ± 0.2 eV by C 1s and N 1s Auger photoelectron spectroscopy. Theoretical analysis identifies the doubly ionized states as a band consisting of two overlapping singlet states and one triplet state with dominant configurations corresponding to holes in the two uppermost molecular orbitals. One of the singlet states and the triplet state can be described as consisting largely of a single configuration, but other doubly ionized states are heavily mixed by configuration interactions. This work provides full assignment of the relative binding energies of the core level features and an analysis of the electronic structure of substituted indoles in comparison with the parent indole.
RESUMO
We investigate the orthorhombic distortion and the structural dynamics of epitaxial MnAs layers on GaAs(001) using static and time-resolved x-ray diffraction. Laser-induced intensity oscillations of Bragg reflections allow us to identify the optical phonon associated with orthorhombic distortion and to follow its softening along the path towards an undistorted phase of hexagonal symmetry. The frequency of this mode falls in the THz range, in agreement with recent calculations. Incomplete softening suggests that the ß-γ transformation deviates from a purely second-order displacive transition.
RESUMO
The initial deactivation pathways of gaseous 2-nitrophenol excited at 268 nm were investigated by time-resolved photoelectron spectroscopy (TRPES) with femtosecond-VUV light, produced by a monochromatized high harmonic generation source. TRPES allowed us to obtain new, valuable experimental information about the ultrafast excited-state dynamics of 2-nitrophenol in the gas phase. In accord with recent ab initio on-the-fly nonadiabatic molecular dynamic simulations, our results validate the occurrence of an ultrafast intersystem crossing leading to an intermediate state that decays on a subpicosecond time scale with a branched mechanisms. Two decay pathways are experimentally observed. One probably involves proton transfer, leading to the most stable triplet aci-form of 2-nitrophenol; the second pathway may involve OH rotation. We propose that following intersystem crossing, an ultrafast fragmentation channel leading to OH or HONO loss could also be operative.
RESUMO
This paper presents the performance of a single-photon-counting hybrid pixel X-ray detector with synchrotron radiation. The camera was evaluated with respect to time-resolved experiments, namely pump-probe-probe experiments held at SOLEIL. The UFXC camera shows very good energy resolution of around 1.5â keV and allows the minimum threshold setting to be as low as 3â keV keeping the high-count-rate capabilities. Measurements of a synchrotron characteristic filling mode prove the proper separation of an isolated bunch of photons and the usability of the detector in time-resolved experiments.
RESUMO
The investigation of ultrafast dynamics, taking place on the few to sub-picosecond time scale, is today a very active research area pursued in a variety of scientific domains. With the recent advent of X-ray free-electron lasers (XFELs), providing very intense X-ray pulses of duration as short as a few femtoseconds, this research field has gained further momentum. As a consequence, the demand for access strongly exceeds the capacity of the very few XFEL facilities existing worldwide. This situation motivates the development of alternative sub-picosecond pulsed X-ray sources among which femtoslicing facilities at synchrotron radiation storage rings are standing out due to their tunability over an extended photon energy range and their high stability. Following the success of the femtoslicing installations at ALS, BESSY-II, SLS and UVSOR, SOLEIL decided to implement a femtoslicing facility. Several challenges were faced, including operation at the highest electron beam energy ever, and achievement of slice separation exclusively with the natural dispersion function of the storage ring. SOLEIL's setup also enables, for the first time, delivering sub-picosecond pulses simultaneously to several beamlines. This last feature enlarges the experimental capabilities of the facility, which covers the soft and hard X-ray photon energy range. In this paper, the commissioning of this original femtoslicing facility is reported. Furthermore, it is shown that the slicing-induced THz signal can be used to derive a quantitative estimate for the degree of energy exchange between the femtosecond infrared laser pulse and the circulating electron bunch.
RESUMO
Cisplatin and transplatin (cis- and trans-[PtCl2(NH3)2]) have been allowed to react with methionine (Met) in water solution in a study aimed to characterize the monofunctional complex primarily formed. The thioether function of methionine is known to have a very high affinity for square planar platinum(ii) and sulfur-containing biomolecules have been proposed as a cisplatin drug reservoir on the way to platination at DNA. Both cisplatin and transplatin yield [PtCl(NH3)2Met]+ complexes, delivered by electrospray ionization in the gas phase and sampled as isolated species using tools based on mass spectrometry. The collision induced dissociation spectra of both cis-[PtCl(NH3)2Met]+ and trans-[PtCl(NH3)2Met]+ are quite similar and also the transport properties assayed by ion mobility mass spectrometry do not allow any appreciable discrimination. However, the vibrational spectra obtained by IR multiple photon absorption (IRMPD) spectroscopy show distinct features. Their analysis, supported by quantum chemical calculations, has revealed that while cisplatin attack is mainly directed to the sulfur atom of Met, transplatin shows a more balanced partition between sulfur and nitrogen binding. Among the vibrational signatures characterizing cis-[PtCl(NH3)2Met]+ and trans-[PtCl(NH3)2Met]+ complexes, the asymmetric NH2 stretching of the α-amino group of the amino acid at ca. 3440 cm-1 is peculiar and diagnostic of S-platination. IRMPD kinetics evaluated at this frequency support the prevailing S-attack by cisplatin while approximately a 1 : 2 ratio of S- versus N-coordination is observed by transplatin, to be possibly related to the trans effect at the platinum center.
Assuntos
Antineoplásicos/química , Cisplatino/química , Metionina/química , DNA/química , Adutos de DNA , Platina , Análise Espectral , VibraçãoRESUMO
We explore the possibility that protonated molecular ions might be an unexpected source of interference in the recognition process of anions and neutral species by Zn-salophen receptors. Zn-salophen complexes are known to bind anions and neutral molecules in solution. We present here evidence (from computational work and IRMPD spectroscopy) that these complexes can also be the binding site for protonated pyridine or quinuclidine. The resulting binding pattern does not involve the Zn ion, but one of the oxygen atoms directly attached to it. The resulting complex therefore turns out to have a positive charge adjacent to the Zn-salophen binding site. This finding seems to point to the existence of an interfering factor in the quantification of the experimental data about the association constant.
RESUMO
The conformational landscape of (S)-1-(4-chlorophenyl)ethanol, its monohydrated complex, and its diastereomeric adducts with R- and S-butan-2-ol, have been investigated by resonant two-photon ionization (R2PI) spectroscopy coupled with time-of-flight mass spectrometry. Theoretical calculations at the D-B3LYP/6-31++G** level of theory have been performed to assist in the interpretation of the spectra and in the assignment of the structures. The R2PI spectra and the predicted structures have been compared with those obtained on the analogous non-halogenated and fluorinated systems, i.e., (R)-1-phenylethanol and (S)-1-(4-fluorophenyl)ethanol, respectively. It appears that the presence of chlorine atom in the para position of the aromatic ring does not influence the overall geometry of bare molecule and its complexes with respect to the non-halogenated analogous systems. Anyway, it affects the electron density in the π system, and in turn the strength of OH···π and CH···π interactions. A spectral chiral discrimination is evident from the R2PI spectra of the diastereomeric adducts of (S)-1-(4-chlorophenyl)ethanol with the two enantiomers of butan-2-ol.
RESUMO
The X-ray absorption spectra (XAS) of Ar2 and ArNe dimers and small Ar clusters in the L2,3 region (244-252 eV) of the Ar atom have been recorded using synchrotron light and a combination of coincidence methods and kinetic energy discrimination of energetic ions. The absorption peaks in the spectra of the dimers and clusters were found to be shifted and broadened relative to the peaks in the spectrum of the Ar atom. In order to unambiguously relate these chemical shifts to the electronic structure of the core excited states in dimers, we performed ab initio calculations of the XAS spectra. Implications of the results for the use of XAS as a structure determination method in large rare gas clusters are discussed.
RESUMO
The vibrational features and molecular structures of complexes formed by a series of uranyl-salophen receptors with simple anions, such as Cl(-) , H(-) , and HCOO(-) , have been investigated in the gas phase. Spectra of the anionic complexes were studied in the $\tilde \nu $=800-1800â cm(-1) range by mass-selective infrared multiple photon dissociation (IRMPD) spectroscopy with a continuously tunable free-electron laser. The gas-phase decarboxylation of the formate adducts produces uranyl-salophen monohydride anions, which have been characterized for the first time and reveal a strong UH bond, the nature of which has been elucidated theoretically. The spectra are in excellent agreement with the results obtained from high-quality ab initio calculations, which provided the structure and binding features of the anion-receptor complexes.
RESUMO
The vibrational spectra of ciprofloxacin complexes with monovalent (Li(+), Na(+), K(+), Ag(+)) and polyvalent (Mg(2+), Al(3+)) metal ions are recorded in the range 1000-1900 cm(-1) by means of infrared multiple-photon dissociation (IRMPD) spectroscopy. The IRMPD spectra are analyzed and interpreted in the light of density functional theory (DFT)-based quantum chemical calculations in order to identify the possible structures present under our experimental conditions. For each metal-ciprofloxacin complex, four isomers are predicted, considering different chelation patterns. A good agreement is found between the measured IRMPD spectrum and the calculated absorption spectrum of the most stable isomer for each complex. Metal ion size and charge are found to drive the competition among the different coordination motifs: small size and high charge density metal ions prefer to coordinate the quinolone between the two carbonyl oxygen atoms, whereas large-size metal ions prefer the carboxylate group as a coordination site. In the latter case, an intramolecular hydrogen bond compensates the weaker interaction established by these cations. The role of the metal cation on the stabilization of ionic and nonionic structures of ciprofloxacin is also investigated. It is found that large-size metal ions preferentially stabilize charge separated motifs and that the increase of metal ion charge has a stabilizing effect on the zwitterionic form of ciprofloxacin.
Assuntos
Ciprofloxacina/química , Metais/química , Compostos Organometálicos/química , Teoria Quântica , Prótons , Espectrofotometria InfravermelhoRESUMO
The molecular diastereomeric complexes between R-1-phenyl-1-ethanol, S-1-(4-fluorophenyl)ethanol and S-1-(2-fluorophenyl)ethanol and R and S-butan-2-ol, isolated under molecular beam conditions in the gas phase, have been investigated by mass-selective resonant two-photon ionization (R2PI) and infrared depleted R2PI (IR-R2PI). The comparison of the three systems allowed us to highlight the significance of specific intermolecular interactions in the chiral discrimination process. The interpretation of the results is based on theoretical predictions mainly at the D-B3LYP/6-31++G** level of theory. The homo and heterochiral complexes are endowed with fine differences in intermolecular interactions, namely strong OH···O, and weaker CH···π, OH···π, CH···F as well as repulsive interactions. The presence of a fluorine atom in the para position of the aromatic ring does not influence the overall geometry of the complex whilst it affects the electron density in the π system and the strength of CH···π and OH···π interactions. The role and the importance of CH···F intermolecular interactions are evident in the complexes with fluorine substitution in the ortho position. While the ortho hetero complex is structurally analogous to the hetero para and non-fluorinated structures, butan-2-ol in the ortho homo adduct adopts a different conformation in order to establish a CH···F intermolecular interaction.
RESUMO
This work shows how the N 1s photoemission (PE) spectrum of self-associated melamine molecules in aqueous solution has been successfully rationalized using an integrated computational approach encompassing classical metadynamics simulations and quantum calculations based on density functional theory (DFT). The first approach allowed us to describe interacting melamine molecules in explicit waters and to identify dimeric configurations based on π-π and/or H-bonding interactions. Then, N 1s binding energies (BEs) and PE spectra were computed at the DFT level for all structures both in the gas phase and in an implicit solvent. While pure π-stacked dimers show gas-phase PE spectra almost identical to that of the monomer, those of the H-bonded dimers are sensibly affected by NH···NH or NH···NC interactions. Interestingly, the solvation suppresses all of the non-equivalences due to the H-bonds yielding similar PE spectra for all dimers, matching very well our measurements.
RESUMO
Sulfur-based molecules producing self-assembled monolayers on gold surfaces have long since become relevant functional molecular materials with many applications in biosensing, electronics, and nanotechnology. Among the various sulfur-containing molecules, the possibility to anchor a chiral sulfoxide to a metal surface has been scarcely investigated, despite this class of molecules being of great importance as ligands and catalysts. In this work, (R)-(+)-methyl p-tolyl sulfoxide was deposited on Au(111) and investigated by means of photoelectron spectroscopy and density functional theory calculations. The interaction with Au(111) leads to a partial dissociation of the adsorbate due to S-CH3 bond cleavage. The observed kinetics support the hypotheses that (R)-(+)-methyl p-tolyl sulfoxide adsorbs on Au(111) in two different adsorption arrangements endowed with different adsorption and reaction activation energies. The kinetic parameters related to the adsorption/desorption and reaction of the molecule on the Au(111) surface have been estimated.
RESUMO
We report a combination of quantum mechanical calculations and a range of spectroscopic measurements in the gas phase of N,N-diethylhydroxylamine, an important scavenger compound. Three conformers were observed by pulsed jet Fourier transform microwave spectroscopy in the 6.5-18.5â¯GHz frequency range. They are characterized by the hydroxyl hydrogen atom being in trans orientation with respect to the bisector of the CNC angle while the side alkyl chains can be both trans (global minimum, Cs symmetry, Aâ¯=â¯7608.1078(4), Bâ¯=â¯2020.2988(2) and Câ¯=â¯1760.5423(2) MHz) or one trans and the other gauche (second energy minimum, Aâ¯=â¯5302.896(1), Bâ¯=â¯2395.9822(4) and Câ¯=â¯1804.8567(3) MHz) or gauche' (third energy minimum, Aâ¯=â¯5960.8025(6), Bâ¯=â¯2273.6627(4) and Câ¯=â¯1975.8074(4) MHz). For the global minimum, the 13Cα,13Cß and 15N isotopologues were observed in natural abundance, allowing for an accurate partial structure determination. Moreover, several lines were detected by free jet absorption millimeter wave spectroscopy in the 59.6-74.4â¯GHz spectral range. The electron binding energies of the highest occupied molecular orbital and the next-to-highest occupied molecular orbital, determined by photoelectron spectroscopy, are 8.95 and 10.76â¯eV, respectively. Supporting calculations evidence that, (i) upon ionization of the HOMO, the molecular structure changes from an amine to an N-oxoammonium arrangement and (ii) the 0-0 of the HOMO-1 photoionization is 10.46â¯eV. The K-shell binding energies, determined by X-ray photoelectron spectroscopy, are 290.42â¯eV (Cß), 291.45â¯eV (Cα), 405.98â¯eV (N) and 538.75â¯eV (O). The Fourier transform near infrared spectrum is reported and a tentative assignment is proposed. The equilibrium wavenumber (ωÌâ¯=â¯3811â¯cm-1) and the anharmonicity constant (ωÌχâ¯=â¯-87.5â¯cm-1) of the hydroxyl stretching mode were estimated using a quadratic model.
Assuntos
Elétrons , Teoria Quântica , Hidroxilaminas , Estrutura Molecular , Espectroscopia FotoeletrônicaRESUMO
Diastereomeric adducts between (S)-1-(4-fluorophenyl)-ethanol and R and S 2-butanol, formed by supersonic expansion, have been investigated by means of a combination of mass selected resonant two-photon ionization-spectroscopy and infrared depletion spectroscopy. Chiral recognition is evidenced by the specific spectroscopic signatures of the S(1)â S(0) electronic transition as well as different frequencies and intensities of the OH stretch vibrational mode in the ground state. D-DFT calculations have been performed to assist in the analysis of the spectra and the determination of the structures. The homochiral and heterochiral complexes show slight structural differences, in particular in the interaction of the alkyl groups of 2-butanol with the aromatic ring. The experimental results show that the homochiral [FE(S)·B(S)] complex is more stable than the heterochiral [FE(S)·B(R)] diastereomer in both the ground and excited states. The binding energy difference has been evaluated to be greater than 0.60 kcal mol(-1).