Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 331: 117211, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657206

RESUMO

The sustainable and green treatment of landfill leachate (LL), produced by municipal solid waste, represents one of the most relevant challenges in the integrated waste management systems. Accordingly, in this work a green solution was investigated by coupling an innovative hybrid constructed wetland (HCW) to a solar photo-Fenton (SPF) process. A multiple layers HCW pilot plant including different medium substrates (sand, solid compost and carriers) and plant species (Phragmites australis, Arundo donax and A. plinii) was designed. The HCW was functionalised with compost tea solution to simultaneously provide high nutrient content for plants and increase the microorganism biodiversity. Process efficiency was investigated using different real LLs (young and mature) in terms of chemical oxygen demand (COD), nitrogen compounds, chlorides and metals. Removals in the range 75-95% were observed for all the parameters after ten days of leachate recirculation in the pilot plant. Subsequently, the SPF process was carried out in a raceway pond reactor (RPR) as polishing step, significantly improving COD removal (further 49%). HCW combined with SPF in RPR would allow to meet the corresponding limits according to the final use/fate of the effluent by modulating the main parameters of the process.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/química , Áreas Alagadas , Luz Solar , Eliminação de Resíduos Líquidos , Poaceae
2.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885847

RESUMO

Hawthorn (Crataegus monogyna Jacq.) is a wild edible fruit tree of the genus Crataegus, one of the most interesting genera of the Rosaceae family. This review is the first to consider, all together, the pharmaceutical, phytochemical, functional and therapeutic properties of C. monogyna based on numerous valuable secondary metabolites, including flavonoids, vitamin C, glycoside, anthocyanin, saponin, tannin and antioxidants. Previous reviews dealt with the properties of all species of the entire genera. We highlight the multi-therapeutic role that C. monogyna extracts could have in the treatment of different chronic and degenerative diseases, mainly focusing on flavonoids. In the first part of this comprehensive review, we describe the main botanical characteristics and summarize the studies which have been performed on the morphological and genetic characterization of the C. monogyna germplasm. In the second part, the key metabolites and their nutritional and pharmaceutical properties are described. This work could be an essential resource for promoting future therapeutic formulations based on this natural and potent bioactive plant extract.


Assuntos
Anti-Infecciosos/farmacologia , Crataegus/química , Preparações Farmacêuticas/análise , Compostos Fitoquímicos/análise , Antioxidantes/farmacologia , Crataegus/genética , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia
3.
Ecotoxicol Environ Saf ; 193: 110345, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092578

RESUMO

Many areas of the world are affected simultaneously by salinity and heavy metal pollution. Halophytes are considered as useful candidates in remediation of such soils due to their ability to withstand both osmotic stress and ion toxicity deriving from high salt concentrations. Quinoa (Chenopodium quinoa Willd) is a halophyte with a high resistance to abiotic stresses (drought, salinity, frost), but its capacity to cope with heavy metals has not yet been fully investigated. In this pot experiment, we investigated phytoextraction capacity, effects on nutrient levels (P and Fe), and changes in gene expression in response to application of Cr(III) in quinoa plants grown on saline or non-saline soil. Plants were exposed for three weeks to 500 mg kg-1 soil of Cr(NO3)3·9H2O either in the presence or absence of 150 mM NaCl. Results show that plants were able tolerate this soil concentration of Cr(III); the metal was mainly accumulated in roots where it reached the highest concentration (ca. 2.6 mg g-1 DW) in the presence of NaCl. On saline soil, foliar Na concentration was significantly reduced by Cr(III). Phosphorus translocation to leaves was reduced in the presence of Cr(III), while Fe accumulation was enhanced by treatment with NaCl alone. A real-time RT-qPCR analysis was conducted on genes encoding for sulfate, iron, and phosphate transporters, a phytochelatin, a metallothionein, glutathione synthetase, a dehydrin, Hsp70, and enzymes responsible for the biosynthesis of proline (P5CS), glycine betaine (BADH), tocopherols (TAT), and phenolic compounds (PAL). Cr(III), and especially Cr(III)+NaCl, affected transcript levels of most of the investigated genes, indicating that tolerance to Cr is associated with changes in phosphorus and sulfur allocation, and activation of stress-protective molecules. Moderately saline conditions, in most cases, enhanced this response, suggesting that the halophytism of quinoa could contribute to prime the plants to respond to chromium stress.


Assuntos
Chenopodium quinoa/efeitos dos fármacos , Chenopodium quinoa/metabolismo , Cromo/toxicidade , Salinidade , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Transporte Biológico/efeitos dos fármacos , Chenopodium quinoa/genética , Cromo/farmacocinética , Expressão Gênica/efeitos dos fármacos , Íons/metabolismo , Ferro/metabolismo , Chumbo/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Prolina/biossíntese , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Poluentes do Solo/farmacocinética , Estresse Fisiológico , Enxofre/metabolismo , Tocoferóis/metabolismo
4.
Ecotoxicol Environ Saf ; 189: 110018, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31812823

RESUMO

Understanding how environmental pollutants influence plant occurrence, growth, and development is key for effective management plans and potential bioremediation. Rare plants, such as orchids, may occur in modified habitats and on soils containing heavy metals, yet their ecological and physiological responses to heavy metals is poorly understood. We investigated the influence of heavy metal pollution on orchid growth rates and interactions with soil fungal mutualists by comparing a large population of the orchid Epipactis helleborine (L.) Crantz subsp. tremolsii (Pau) E. Klein that grows on mine tailings in south-west Sardinia (Italy) with a population that grows on non-contaminated soils in central Sardinia. Soils of the contaminated site had high levels of heavy metals and low organic matter and nutritive elements content. We performed a morphological analysis on twenty individuals that have been subjected to measurement of bioaccumulation and translocation of heavy metals. Fungi associated with the roots of plants from the contaminated and uncontaminated site were grown and identified by DNA barcoding approach. Plants from the contaminated site were smaller than the ones growing in the uncontaminated site and were found to be able to tolerate heavy metals from the soil and to accumulate and translocate them into their organs. Fungi belonging to the genus Ilyonectria (Ascomycota) were found both in contaminated and uncontaminated sites, while an unidentified fungus was isolated from roots in the contaminated site only. These results are discussed in terms of orchids' tolerance to heavy metals and its physiological and ecological mechanisms. The role of contaminated habitats in harbouring orchids and peculiar taxa is also discussed.


Assuntos
Metais Pesados/metabolismo , Orchidaceae/metabolismo , Poluentes do Solo/metabolismo , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Biodegradação Ambiental , Ilhas , Itália , Metais Pesados/análise , Mineração , Orchidaceae/crescimento & desenvolvimento , Orchidaceae/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo/química , Poluentes do Solo/análise
5.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036388

RESUMO

Over the last several decades, several lines of evidence have shown that epigenetic modifications modulate phenotype and mediate an organism's response to environmental stimuli. Plant DNA is normally highly methylated, although notable differences exist between species. Many biomolecular techniques based on PCR have been developed to analyse DNA methylation status, however a qualitative leap was made with the advent of next-generation sequencing (NGS). In the case of large, repetitive, or not-yet-sequenced genomes characterised by a high level of DNA methylation, the NGS analysis of bisulphite pre-treated DNA is expensive and time consuming, and moreover, in some cases data analysis is a major challenge. Methylation-sensitive amplification polymorphism (MSAP) analysis is a highly effective method to study DNA methylation. The method is based on the comparison of double DNA digestion profiles (EcoRI-HpaII and EcoRI-MspI) to reveal methylation pattern variations. These are often attributable to pedoclimatic and stress conditions which affect all organisms during their lifetime. In our study, five white poplar (Populus alba L.) specimens were collected from different monoclonal stands in the Maltese archipelago, and their DNA was processed by means of an innovative approach where MSAP analysis was followed by NGS. This allowed us to identify genes that were differentially methylated among the different specimens and link them to specific biochemical pathways. Many differentially methylated genes were found to encode transfer RNAs (tRNAs) related to photosynthesis or light reaction pathways. Our results clearly demonstrate that this combinatorial method is suitable for epigenetic studies of unsequenced genomes like P. alba (at the time of study), and to identify epigenetic variations related to stress, probably caused by different and changing pedoclimatic conditions, to which the poplar stands have been exposed.


Assuntos
Metilação de DNA , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Amplificação de Ácido Nucleico , Populus/genética , Análise por Conglomerados , Biologia Computacional/métodos , Epigênese Genética , Genótipo , Polimorfismo Genético
6.
Ecotoxicol Environ Saf ; 148: 675-683, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29172148

RESUMO

In the last decade, many scientists have focused their attention on the search for new plant species that can offer improved capacities to reclaim polluted soils and waters via phytoremediation. In this study, seed batches from three natural populations of Dittrichia viscosa, harvested in rural, urban, and industrial areas of central and southern Italy, were used to: (i) evaluate the genetic and morphological diversity of the populations; (ii) develop an efficient protocol for in-vitro propagation from seedling microcuttings; (iii) achieve optimal acclimatization of micropropagated plants to greenhouse conditions; (iv) test the response to arsenic (As) soil contamination of micropropagated plants. The genetic biodiversity study, based on Random Amplification of Polymorphic DNA (RAPD), as well as the morphometric analysis of 20 seedlings from each population revealed some degree of differentiation among populations. Based on these data, the most biodiverse plants from the three populations (10 lines each) were clonally multiplied by micropropagation using microcuttings of in-vitro grown seedlings. Three culture media were tested and Mureshige and Skoog medium was chosen for both seedling growth and micropropagation. The micropropagated plants responded well to greenhouse conditions and over 95% survived the acclimatization phase. Four clones were tested for their capacity to grow on soil spiked with NaAsO2 and to absorb and accumulate the metalloid. All clones tolerated up to 1.0mg As. At the end of the trial (five weeks), As was detectable only in leaves of As-treated plants and concentration varied significantly among clones. The amount of As present in plants (leaves) corresponded to ca. 0.10-1.7% of the amount supplied. However, As was no longer detectable in soil suggesting that the metalloid was taken up, translocated and probably phytovolatilized.


Assuntos
Arsênio/metabolismo , Asteraceae , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Solo/química , Asteraceae/genética , Asteraceae/crescimento & desenvolvimento , Asteraceae/metabolismo , Itália , Folhas de Planta/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Sementes/crescimento & desenvolvimento
7.
J Environ Manage ; 179: 93-102, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27219351

RESUMO

Heavy metals (HMs) are one of the major ecological problem related to human activities. Phytoremediation is a promising "green technology" for soil and water reclamation, and it can be improved by means of the use of chelants. In the past particular attention was paid on the effects of HMs and/or chelants on plant health, but much less on their effects on rhizosphere communities. To shed light on the interaction among plant-HM-chelant-rhizobacterial community a pot experiment was set up. Maize plants were grown on uncontaminated, multi-metal (copper and zinc) contaminated and chelants artificially amended soils. A high concentration of HMs was detected in the different maize organs; chelants improved the accumulation capacity of the maize plants. The rhizosphere bacterial community isolated from control plants showed the largest biodiversity in terms of bacterial genera. However, the addition of HMs reduced the number of taxa to three: Bacillus, Lysinibacillus and Pseudomonas. The effects of HM treatment were counteracted by the addition of chelants in terms of the genetic biodiversity. Furthermore, several bacterial strains particularly resistant to HMs and chelants were isolated and selected. Our study suggests that the combined use of resistant bacteria and chelants could improve the phytoremediation capacity of maize.


Assuntos
Biodegradação Ambiental , Metais Pesados/toxicidade , Rizosfera , Poluentes do Solo/toxicidade , Zea mays/microbiologia , Bacillus/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Quelantes , Cobre/farmacocinética , Cobre/toxicidade , Ácido Edético/farmacologia , Etilenodiaminas/farmacologia , Metais Pesados/farmacocinética , Consórcios Microbianos/efeitos dos fármacos , Microbiologia do Solo , Poluentes do Solo/farmacocinética , Succinatos/farmacologia , Distribuição Tecidual , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zinco/farmacocinética , Zinco/toxicidade
8.
J Environ Manage ; 146: 94-99, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25163599

RESUMO

Plant biodiversity and intra-population genetic variability have not yet been properly exploited in the framework of phytoremediation and soil reclamation. For this reason, iron and other metal accumulation capacity of two Cu and Zn tolerant poplar clones, namely AL22 (Populus alba L.) and N12 (Populus nigra L.), was investigated in a pot experiment. Cuttings of the two clones were planted in iron rich soil collected from an urban-industrial area. Concentrations of Cd, Cu, Fe, Pb and Zn were analysed in leaves (at different times), as well as in stems and in roots (at the end of the experiment), both in control plants and in plants grown on a soil whose Fe availability was artificially enhanced. Results showed that Cd and Zn were preferentially accumulated in leaves, whereas Cu, Fe and Pb were mainly accumulated in roots. The main differences in metal accumulation between clones were related to Cd (about tenfold higher concentrations in N12) and Cu (higher concentrations in AL22). Once soil Fe availability was enhanced, the uptake and accumulation of all metals declined, with the exception of Fe at the first sampling time in AL22 leaves. The different behaviour of the two poplar clones suggests that a thoughtful choice should be made for their use in relation to soil heavy metal remediation.


Assuntos
Ferro/metabolismo , Metais Pesados/metabolismo , Populus/metabolismo , Poluentes do Solo/metabolismo , Oligoelementos/metabolismo , Biodegradação Ambiental , Humanos , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Populus/genética
9.
J Environ Manage ; 132: 9-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24252633

RESUMO

Phytoremediation is a cost-effective and environment friendly in situ technique for the reclamation of heavy metal-polluted soils. The efficacy of this technique, which relies on tolerant plant species, can be improved by the use of chelating agents. A pot experiment was carried out to evaluate the phytoextraction and phytostabilisation capacities of a white poplar (Populus alba L.) clone named AL35 previously selected for its marked tolerance to copper (Cu) and zinc (Zn). Cuttings were grown on agricultural soil highly contaminated with Cu and Zn, in the presence or not (controls) of a chelant mixture (EDTA/EDDS) known to enhance metal bioavailability and, hence, uptake by plant roots, or the not yet investigated synthetic, highly biodegradable polyaspartic acid (PASP). Both chelant treatments improved the phytostabilisation of Cu and Zn in AL35 plants, whilst the phytoextraction capacity was enhanced only in the case of Cu. Considering that the effectiveness of PASP as phytostabilizer was comparable or better than that of EDTA/EDDS, the low cost of its large-scale chemical synthesis and its biodegradability makes it a good candidate for chelant-enhanced metal phytoextraction from soil while avoiding the toxic side-effects previously described for both EDTA and EDDS.


Assuntos
Quelantes/metabolismo , Ácido Edético/metabolismo , Recuperação e Remediação Ambiental/métodos , Etilenodiaminas/metabolismo , Peptídeos/metabolismo , Populus/metabolismo , Poluentes do Solo/metabolismo , Succinatos/metabolismo , Biodegradação Ambiental , Cobre/metabolismo , Populus/genética , Zinco/metabolismo
10.
J Hazard Mater ; 471: 134330, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678704

RESUMO

Water scarcity, affecting one-fifth of the global population, is exacerbated by industrial, agricultural, and population growth pressures on water resources. Wastewater, containing Contaminants of Emerging Concern (CECs) such as antibiotics, presents environmental and health hazards. This study explores a Nature-Based Solution (NBS) using Constructed Wetlands (CWs) for wastewater reclamation and CECs removal. Two CW configurations (Vertical-VCW and Hybrid-HCW) were tested for their efficacy. Results show significant reduction in for all the chemico-physical and biological parameters meeting Italian water reuse standards. Furthermore, Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistant Genes (ARGs) were effectively reduced, emphasizing the potential of the CWs in mitigating Antimicrobial Resistance (AMR). Lettuce seedlings irrigated with the treated wastewater exhibited no ARB/ARGs transfer, indicating the safety of the reclaimed wastewater for agricultural use. Overall, CWs emerge as sustainable Nature Based Solutions (NBS) for wastewater treatment, contributing to global water conservation efforts amid escalating water scarcity challenges.


Assuntos
Águas Residuárias , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Antibacterianos/farmacologia , Purificação da Água/métodos , Lactuca/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/toxicidade
11.
Chemosphere ; 362: 142642, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908441

RESUMO

Chromium (Cr) is an highly toxic metal to plants and causes severe damage to their growth, development, and reproduction. Plant exposure to chronic and acute Cr stress treatments results in significant changes at short time in the gene expression profile and at long time in the genomic DNA methylation profile at a transgenerational level and, consequently, in gene expression. These epigenetic modifications and their implications imposed by the Cr stress are not yet completely known in plants. Herein, were identified the epigenetic changes induced by chronic and acute Cr stress treatments in Arabidopsis thaliana plants using Methylation Sensitive Amplification Polymorphism coupled with next-generation sequencing (MSAP-Seq). First-generation Arabidopsis plants (termed F0 plants) kept under hoagland solution were subjected to Cr stress treatments. For chronic Cr stress, plants were treated through hoagland solution with 2.5 µM Cr during the entire cultivation period until seed harvest. Meanwhile, for acute Cr stress, plants were treated with 5 µM Cr during the first three weeks and returned to unstressful control condition until seed harvest. Seeds from F0 plants were sown and F1 plants were re-submitted to the same Cr stress treatments. The seed germination rate was evaluated from F-2 seeds harvested of F1 plants kept under different Cr stress treatments (0, 10, 20, and 40 µM) compared to the unstressful control condition. These data showed significant changes in the germination rate of F-2 seeds originating from stressed F1 plants compared to F-2 seeds harvested from unstressful control plants. Given this data, F1 plants kept under these chronic and acute Cr stress treatments and unstressful control condition were evaluated for the transgenerational epigenetic modifications using MSAP-Seq. The MSAP-Seq data showed that several genes were modified in their methylation status as a consequence of chronic and acute Cr stress treatment to maintain plant defenses activated. In particular, RNA processing, protein translation, photorespiration, energy production, transmembrane transport, DNA transcription, plant development, and plant resilience were the major biological processes modulated by epigenetic mechanisms identified in F1 plants kept under chronic and acute Cr stress. Therefore, collective data suggested that Arabidopsis plants kept under Cr stress regulate their epigenetic status over generations based on DNA methylation to modulate defense and resilience mechanisms.


Assuntos
Arabidopsis , Cromo , Metilação de DNA , Epigênese Genética , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Cromo/toxicidade , Metilação de DNA/efeitos dos fármacos , Estresse Fisiológico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/genética
12.
Front Microbiol ; 14: 1171980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303788

RESUMO

The salinization of soil is the process of progressive accumulation of salts such as sulfates, sodium, or chlorides into the soil. The increased level of salt has significant effects on glycophyte plants, such as rice, maize, and wheat, which are staple foods for the world's population. Consequently, it is important to develop biotechnologies that improve crops and clean up the soil. Among other remediation methods, there is an environmentally friendly approach to ameliorate the cultivation of glycophyte plants in saline soil, namely, the use of microorganisms tolerant to salt with growth-promoting features. Plant growth-promoting rhizobacteria (PGPR) can improve plant growth by colonizing their roots and playing a vital role in helping plants to establish and grow in nutrient-deficient conditions. Our research aimed to test in vivo halotolerant PGPR, isolated and characterized in vitro in a previous study conducted in our laboratory, inoculating them on maize seedlings to improve their growth in the presence of sodium chloride. The bacterial inoculation was performed using the seed-coating method, and the produced effects were evaluated by morphometric analysis, quantization of ion contents (sodium, potassium), produced biomass, both for epigeal (shoot) and hypogeal (root) organs, and by measuring salt-induced oxidative damage. The results showed an increase in biomass and sodium tolerance and even a reduction of oxidative stress in seedlings pretreated with a PGPR bacterial consortium (Staphylococcus succinus + Bacillus stratosphericus) over the control. Moreover, we observed that salt reduces growth and alters root system traits of maize seedlings, while bacterial treatment improves plant growth and partially restores the root architecture system in saline stress conditions. Therefore, the PGPR seed-coating or seedling treatment could be an effective strategy to enhance sustainable agriculture in saline soils due to the protection of the plants from their inhibitory effect.

13.
J Hazard Mater ; 442: 130092, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303345

RESUMO

In this study, we describe the results obtained in a study of the transgenerational phenotypic effects of chromium (Cr) stress on the model plant species Arabidopsis thaliana. The F1 generation derived from parents grown under chronic and medium chronic stress showed significantly higher levels of the maximal effective concentration (EC50) compared with F1 plants generated from unstressed parents. Moreover, F1 plants from Cr-stressed parents showed a higher germination rate when grown in the presence of Cr. F1 plants derived from parents cultivated under chronic Cr stress displayed reduced hydrogen peroxide levels under Cr stress compared to controls. At lower Cr stress levels, F1 plants were observed to activate promptly more genes involved in Cr stress responses than F0 plants, implying a memory effect linked to transgenerational priming. At higher Cr levels, and at later stages, F1 plants modulated significantly fewer genes than F0 plants, implying a memory effect leading to Cr stress adaptation. Several bHLH transcription factors were induced by Cr stress in F1 but not in F0 plants, including bHLH100, ORG2 and ORG3. F1 plants optimized gene expression towards pathways linked to iron starvation response. A model of the transcriptional regulation of transgenerational memory to Cr stress is presented here, and could be applied for other heavy metal stresses.


Assuntos
Arabidopsis , Metais Pesados , Arabidopsis/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Adaptação Fisiológica , Peróxido de Hidrogênio/metabolismo , Metais Pesados/metabolismo
14.
Front Plant Sci ; 14: 1181039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389288

RESUMO

Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.

15.
Plants (Basel) ; 11(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36145766

RESUMO

A high-quality transcriptome is required to advance numerous bioinformatics workflows. Nevertheless, the effectuality of tools for de novo assembly and real precision assembled transcriptomes looks somewhat unexplored, particularly for non-model organisms with complicated (very long, heterozygous, polyploid) genomes. To disclose the performance of various transcriptome assembly programs, this study built 11 single assemblies and analyzed their performance on some significant reference-free and reference-based criteria. As well as to reconfirm the outputs of benchmarks, 55 BLAST were performed and compared using 11 constructed transcriptomes. Concisely, normalized benchmarking demonstrated that Velvet-Oases suffer from the worst results, while the EvidentialGene strategy can provide the most comprehensive and accurate transcriptome of Lilium ledebourii (Baker) Boiss. The BLAST results also confirmed the superiority of EvidentialGene, so it could capture even up to 59% more (than Velvet-Oases) unique gene hits. To promote assembly optimization, with the help of normalized benchmarking, PCA and AHC, it is emphasized that each metric can only provide part of the transcriptome status, and one should never settle for just a few evaluation criteria. This study supplies a framework for benchmarking and optimizing the efficiency of assembly approaches to analyze RNA-Seq data and reveals that selecting an inefficient assembly strategy might result in less identification of unique gene hits.

16.
Front Genet ; 13: 818727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251130

RESUMO

Crop adaptation to climate change is in a part attributed to epigenetic mechanisms which are related to response to abiotic and biotic stresses. Although recent studies increased our knowledge on the nature of these mechanisms, epigenetics remains under-investigated and still poorly understood in many, especially non-model, plants, Epigenetic modifications are traditionally divided into two main groups, DNA methylation and histone modifications that lead to chromatin remodeling and the regulation of genome functioning. In this review, we outline the most recent and interesting findings on crop epigenetic responses to the environmental cues that are most relevant to climate change. In addition, we discuss a speculative point of view, in which we try to decipher the "epigenetic alphabet" that underlies crop adaptation mechanisms to climate change. The understanding of these mechanisms will pave the way to new strategies to design and implement the next generation of cultivars with a broad range of tolerance/resistance to stresses as well as balanced agronomic traits, with a limited loss of (epi)genetic variability.

17.
Chemosphere ; 282: 131052, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34470149

RESUMO

The "Land of pyres", namely "La Terra dei Fuochi", is an area of Campania region (South-Italy), highly inhabited and comprises between the Provinces of Naples and Caserta, sadly known worldwide for the criminal activities related to the illegal waste disposal and burning. These fires, concomitantly with traffic emissions, might be the source of potential toxic element (PTE) dangerous for the human health and causing pathologies. In the framework of Correlation Health-Environment project, funded by the Campania region, eight municipalities (of area "Land of pyres") and three remote sites have been bio-monitored using the olive (Olea europaea L.) plants as biomonitors. Leaves of olive plants were collected in each assayed municipality and the concentration of 11 metal(loid)s was evaluated by means of ICP-OES. Our findings revealed that the air of these municipalities was limitedly contaminated by PTE; in fact, only Sb, Al and Mn were detected in the olive leaves collected in some of the assayed municipalities and showed a high enrichment factors (EC) manly due, probably, to the vehicular traffic emissions. Furthermore, the concentrations of the other assayed PTEs were lower than those of Sb, Al and Mn. For these reasons we suppose that their emissions in the troposphere have been and are limited, and they mainly have a crustal origin. Even if our data are very comforting for those urban area, regarded by many as one of the most contaminated one in Italy, a great environment care, in any case, is always needed.


Assuntos
Poluição do Ar , Olea , Eliminação de Resíduos , Monitoramento Biológico , Monitoramento Ambiental , Humanos , Emissões de Veículos
18.
Genes (Basel) ; 13(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35052437

RESUMO

The species belonging to the genus Medicago are considered a very important genetic resource at global level both for planet's food security and for sustainable rangelands management. The checklist of the Italian flora (2021) includes a total number of 40 Medicago species for Italy, and 27 for Campania region, with a number of doubtful records or related to species no more found in the wild. In this study, 10 Medicago species native to Campania region, and one archaeophyte (M. sativa), identified by means of morphological diagnostic characters, were analyzed in a blind test to assay the efficacy of nine microsatellite markers (five cp-SSRs and four n-SSRs). A total number of 33 individuals from 6 locations were sampled and genotyped. All markers were polymorphic, 40 alleles were obtained with n-SSRs ranging from 8-12 alleles per locus with an average of 10 alleles per marker, PIC values ranged from 0.672 to 0.847, and the most polymorphic SSR was MTIC 564. The cp-SSRs markers were highly polymorphic too; PIC values ranged from 0.644 to 0.891 with an average of 0.776, the most polymorphic cp-SSR was CCMP10. 56 alleles were obtained with cp-SSRs ranging from 7 to 17 alleles per locus with an average of 11. AMOVA analysis with n-SSR markers highlighted a great level of genetic differentiation among the 11 species, with a statistically significant fixation index (FST). UPGMA clustering and Bayesian-based population structure analysis assigned these 11 species to two main clusters, but the distribution of species within clusters was not the same for the two analyses. In conclusion, our results demonstrated that the combination of the used SSRs well distinguished the 11 Medicago species. Moreover, our results demonstrated that the use of a limited number of SSRs might be considered for further genetic studies on other Medicago species.


Assuntos
Cloroplastos/genética , DNA de Plantas/genética , Medicago/genética , Repetições de Microssatélites , Polimorfismo Genético , Teorema de Bayes , Genoma de Planta , Itália , Medicago/classificação , Medicago/crescimento & desenvolvimento , Filogenia
19.
Ann Bot ; 106(5): 791-802, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20810743

RESUMO

BACKGROUND AND AIMS: It is increasingly evident that plant tolerance to stress is improved by mycorrhiza. Thus, suitable plant-fungus combinations may also contribute to the success of phytoremediation of heavy metal (HM)-polluted soil. Metallothioneins (MTs) and polyamines (PAs) are implicated in the response to HM stress in several plant species, but whether the response is modulated by arbuscular mycorrhizal fungi (AMF) remains to be clarified. The aim of the present study was to check whether colonization by AMF could modify growth, metal uptake/translocation, and MT and PA gene expression levels in white poplar cuttings grown on HM-contaminated soil, and to compare this with plants grown on non-contaminated soil. METHODS: In this greenhouse study, plants of a Populus alba clone were pre-inoculated, or not, with either Glomus mosseae or G. intraradices and then grown in pots containing either soil collected from a multimetal- (Cu and Zn) polluted site or non-polluted soil. The expression of MT and PA biosynthetic genes was analysed in leaves using quantitative reverse transcription-PCR. Free and conjugated foliar PA concentrations were determined in parallel. RESULTS: On polluted soil, AMF restored plant biomass despite higher Cu and Zn accumulation in plant organs, especially roots. Inoculation with the AMF caused an overall induction of PaMT1, PaMT2, PaMT3, PaSPDS1, PaSPDS2 and PaADC gene expression, together with increased free and conjugated PA levels, in plants grown on polluted soil, but not in those grown on non-polluted soil. CONCLUSIONS: Mycorrhizal plants of P. alba clone AL35 exhibit increased capacity for stabilization of soil HMs, together with improved growth. Their enhanced stress tolerance may derive from the transcriptional upregulation of several stress-related genes, and the protective role of PAs.


Assuntos
Metalotioneína/metabolismo , Metais Pesados/metabolismo , Micorrizas/fisiologia , Poliaminas/metabolismo , Populus/metabolismo , Populus/microbiologia , Biodegradação Ambiental , Northern Blotting , Cromatografia Líquida de Alta Pressão , Cobre/metabolismo , Micorrizas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Poluentes do Solo/metabolismo , Zinco/metabolismo
20.
Am J Clin Hypn ; 53(1): 27-46, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20718241

RESUMO

In a 2008 pilot study we used DNA microarrays to explore the historical ideo-plastic faculty of therapeutic hypnosis. We documented how to measure changes in activity or experience-dependent gene expression over relatively brief time periods (1 hour and 24 hours) following a single intervention of therapeutic hypnosis (about 1 hour). In the present paper we utilize bioinformatic software to explore the possible meaning and significance of this ideo-plastic faculty of therapeutic hypnosis. Indications suggest that the ideo-plastic process of therapeutic hypnosis may be associated with (1) the heightening of a molecular-genomic signature for the up-regulation (heightened activity) of genes characteristic of stem cell growth, (2) a reduction in cellular oxidative stress, and (3) a reduction in chronic inflammation. We identify these three empirical associations as an initial beta version of the molecular-genomic signature of the ideo-plastic process of therapeutic hypnosis, which can serve as a theoretical and practical guide for clinical excellence by beginners as well as senior professionals. We propose this molecular-genomic level of discourse as a supplement to the traditional cognitive-behavioral description of therapeutic suggestion, hypnosis, and psychotherapy that is consistent with "translational research" currently funded by the National Institute of Mental Health (NIMH).


Assuntos
Biologia Computacional , Regulação da Expressão Gênica/genética , Hipnose/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Encéfalo/metabolismo , Terapia Cognitivo-Comportamental , Perfilação da Expressão Gênica , Pesquisa em Genética , Humanos , Inflamação/genética , Plasticidade Neuronal/genética , Estresse Oxidativo , Células-Tronco/fisiologia , Pesquisa Translacional Biomédica , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA