RESUMO
Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.
Assuntos
Aerossóis/análise , Gases/química , Gasolina/análise , Veículos Off-Road , Compostos Orgânicos/análise , Material Particulado/química , Los Angeles , Metano/análise , Smog/análise , Emissões de Veículos/análiseRESUMO
Nitrogen dioxide is a ubiquitous pollutant in urban areas. Indoor NO2 concentrations are influenced by penetration of outdoor concentrations and by indoor sources. The objectives of this study were to evaluate personal exposure to NO2, taking into account human time-activity patterns in four Mexican cities. Passive filter badges were used for indoor, outdoor, and personal NO2 measurements over 48 hr and indoor workplace measurements over 16 hr. Volunteers completed a questionnaire on exposure factors and a time-activity diary during the sample period. An unpaired t test, an analysis of variance (ANOVA), and a linear regression were performed to compare differences among cities and mean personal NO2 concentrations involving housing characteristics, as well as to determine which variables predicted the personal NO2 concentration. Sampling periods were in April, May, and June 1996 in Mexico City, Guadalajara, Cuernavaca, and Monterrey. All 122 volunteers in the study were working adults, with a mean age of 34 (SD +/- 7.38); 64% were female, and the majority worked in public offices and universities. The highest NO2 concentrations were found in Mexico City (36 ppb for outdoor, 57 ppb for indoor, and 39 ppb for personal concentration) and the lowest in Monterrey (19 ppb for outdoor, 24 ppb for indoor, and 24 ppb for personal concentration). Significant differences in NO2 concentrations were found among the cities in different microenvironments. During the sampling period, volunteers spent 85% of their time indoors. The highest personal NO2 concentration was found when volunteers kept their windows closed (p = 0.03). In the regression model adjusted by city and gender, the best predictors of personal NO2 concentration were outdoor levels and time spent outdoors (R2 = 0.68). These findings suggest that outdoor NO2 concentrations were an important influence on the personal exposure to NO2, due to the specific characteristics and personal behavior of the people in these Mexican cities.
Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental , Modelos Teóricos , Dióxido de Nitrogênio/análise , Oxidantes Fotoquímicos/análise , Adulto , Feminino , Humanos , Masculino , México , Saúde Pública , População Urbana , Local de TrabalhoRESUMO
OBJECTIVE: A study was conducted to evaluate personal ozone exposure (O3p) among asthmatic children residing in Mexico City. MATERIAL AND METHODS: A total of 158 children were recruited from December 1998 to April 2000. On average, three O3p measurements were obtained per child using passive badges. Time-activity patterns were recorded in a diary. Daily ambient ozone measurements (O3a) were obtained from the fixed station, according to children's residence. Levels of O3a and ozone, weighted by time spent in different micro-environments (O3w), were used as independent variables in order to model O3p concentrations using a mixed-effects model. RESULTS: Mean O3p was 7.8 ppb. The main variables in the model were: time spent indoors, distance between residence and fixed station, follow-up group, and two interaction terms (overall R(2)=0.50, p<0.05). CONCLUSIONS: The O3w concentrations can be used as a proxy for O3p, taking into account time-activity patterns and the place of residence of asthmatic Mexican children.
Assuntos
Asma , Exposição Ambiental , Ozônio/efeitos adversos , Adolescente , Criança , Feminino , Humanos , Masculino , México , População UrbanaRESUMO
OBJECTIVE: A study was conducted to evaluate personal ozone exposure (O3p) among asthmatic children residing in Mexico City. MATERIAL AND METHODS: A total of 158 chil-dren were recruited from December 1998 to April 2000. On average, three O3p measurements were obtained per child using passive badges. Time-activity patterns were recorded in a diary. Daily ambient ozone measurements (O3a) were obtained from the fixed station, according to childrens residence. Levels of O3a and ozone, weighted by time spent in different micro-environments (O3w), were used as independent variables in order to model O3p concentrations using a mixed-effects model. RESULTS: Mean O3p was 7.8 ppb. The main variables in the model were: time spent indoors, distance between residence and fixed station, follow-up group, and two interaction terms (overall R²=0.50, p<0.05). CONCLUSIONS: The O3w concentrations can be used as a proxy for O3p, taking into account time-activity patterns and the place of residence of asthmatic Mexican children.
OBJETIVO: Realizamos este estudio para evaluar la exposición personal a ozono (O3p) en niños asmáticos de la Ciudad de México. MATERIAL Y MÉTODOS: Se incluyeron 158 niños entre diciembre de 1998 y abril de 2000. En promedio se obtuvieron tres mediciones por niño, utilizando filtros pasivos para medir O3p. Se caracterizaron los patrones de actividad y las concentraciones ambientales diarias de ozono (O3a) se obtuvieron de estaciones fijas cercanas a la residencia del niño. Los niveles promedio de O3a y las concentraciones ponderadas por el tiempo en diferentes microambientes (O3w) fueron usados como variables independientes para modelar las concentraciones de O3p, utilizando modelos de efectos mixtos. RESULTADOS: La media de O3p fue 7.8 ppb. Las principales variables en el modelo fueron: tiempo en exteriores, distancia, periodo de seguimiento y dos términos de interacción (R²=0.50, p<0.05). CONCLUSIONES: Las concentraciones de O3w pueden usarse como "proxi" de O3p, tomando en cuenta patrones de actividad y lugar de residencia.