Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Host Microbe ; 30(3): 314-328.e11, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35240043

RESUMO

Humans harbor numerous species of colonic bacteria that digest fiber polysaccharides in commonly consumed terrestrial plants. More recently in history, regional populations have consumed edible macroalgae seaweeds containing unique polysaccharides. It remains unclear how extensively gut bacteria have adapted to digest these nutrients. Here, we show that the ability of gut bacteria to digest seaweed polysaccharides is more pervasive than previously appreciated. Enrichment-cultured Bacteroides harbor previously discovered genes for seaweed degradation, which have mobilized into several members of this genus. Additionally, other examples of marine bacteria-derived genes, and their mobile DNA elements, are involved in gut microbial degradation of seaweed polysaccharides, including genes in gut-resident Firmicutes. Collectively, these results uncover multiple separate events that have mobilized the genes encoding seaweed-degrading-enzymes into gut bacteria. This work further underscores the metabolic plasticity of the human gut microbiome and global exchange of genes in the context of dietary selective pressures.


Assuntos
Microbioma Gastrointestinal , Alga Marinha , Bactérias/genética , Bactérias/metabolismo , Bacteroides/metabolismo , Digestão , Microbioma Gastrointestinal/genética , Humanos , Polissacarídeos/metabolismo , Alga Marinha/metabolismo
2.
J Biol Chem ; 285(46): 35999-6009, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20826814

RESUMO

The microbial enzymes that depolymerize plant cell wall polysaccharides, ultimately promoting energy liberation and carbon recycling, are typically complex in their modularity and often contain carbohydrate-binding modules (CBMs). Here, through analysis of an unknown module from a Thermotoga maritima endo-ß-1,4-galactanase, we identify a new family of CBMs that are most frequently found appended to proteins with ß-1,4-galactanase activity. Polysaccharide microarray screening, immunofluorescence microscopy, and biochemical analysis of the isolated module demonstrate the specificity of the module, here called TmCBM61, for ß-1,4-linked galactose-containing ligands, making it the founding member of family CBM61. The ultra-high resolution X-ray crystal structures of TmCBM61 (0.95 and 1.4 Å resolution) in complex with ß-1,4-galactotriose reveal the molecular basis of the specificity of the CBM for ß-1,4-galactan. Analysis of these structures provides insight into the recognition of an unexpected helical galactan conformation through a mode of binding that resembles the recognition of starch.


Assuntos
Proteínas de Bactérias/metabolismo , Galactanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Carboidratos/química , Cristalografia por Raios X , Galactanos/química , Galactose/química , Galactose/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Análise em Microsséries , Microscopia de Fluorescência , Modelos Moleculares , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Thermotoga maritima/enzimologia
3.
PLoS One ; 7(3): e33524, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479408

RESUMO

CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-D-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-ß-D-glucosamine-α-1,4-D-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-ß-D-glucosamine-α-1,4-D-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract.


Assuntos
Acetilglucosaminidase/metabolismo , Metabolismo dos Carboidratos/fisiologia , Clostridium perfringens/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Carboidratos/química , Galactose/química , Galactose/metabolismo , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
4.
Biotechniques ; 48(6): xvii-xxiii, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20569217

RESUMO

p19 RNA binding protein from the Carnation Italian ringspot virus (CIRV) is an RNA-silencing suppressor that binds small interfering RNA (siRNA) with high affinity. We created a bifunctional p19 fusion protein with an N-terminal maltose binding protein (MBP), for protein purification, and a C-terminal chitin binding domain (CBD) to bind p19 to chitin magnetic beads. The fusion protein binds dsRNAs in the size range of 20-23 nucleotides, but does not bind ssRNA or dsDNA. Relative affinities of the p19 fusion protein for different-length RNA and DNA substrates were determined. Binding specificity of the p19 fusion protein for small dsRNA allows detection of miRNA:RNA probe duplexes. Using radioactive RNA probes, we were able to detect low levels of miRNAs in the sub-femtomole range and in the presence of a million-fold excess of total RNA. Detection is linear over three logs. Unlike most nucleic acid detection methods, p19 selects for RNA hybrids of correct length and structure. Rules for designing optimal RNA probes for p19 detection of miRNAs were determined by in vitro binding of 18 different dsRNA oligos to p19. These studies demonstrate the potential of p19 fusion protein to detect miRNAs and isolate endogenous siRNAs.


Assuntos
MicroRNAs/análise , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismo , Proteínas Virais/metabolismo , Animais , Limite de Detecção , Proteínas Ligantes de Maltose , Proteínas Periplásmicas de Ligação/biossíntese , Ligação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ratos , Proteínas Recombinantes de Fusão/biossíntese , Tombusvirus/genética , Tombusvirus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA