Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947810

RESUMO

The development of a simple and low cost electrochemical impedance immunosensor based on screen printed gold electrode for rapid detection of Escherichia coli in water is reported. The immunosensor is fabricated by immobilizing anti-E. coli antibodies onto a gold surface in a covalent way by the photochemical immobilization technique, a simple procedure able to bind antibodies upright onto gold surfaces. Impedance spectra are recorded in 0.01 M phosphate buffer solution (PBS) containing 10 mM Fe(CN)63-/Fe(CN)64- as redox probe. The Nyquist plots can be modelled with a modified Randles circuit, identifying the charge transfer resistance Rct as the relevant parameter after the immobilization of antibodies, the blocking with BSA and the binding of E. coli. The introduction of a standard amplification procedure leads to a significant enhancement of the impedance increase, which allows one to measure E. coli in drinking water with a limit of detection of 3 × 101 CFU mL-1 while preserving the rapidity of the method that requires only 1 h to provide a "yes/no" response. Additionally, by applying the Langmuir adsorption model, we are able to describe the change of Rct in terms of the "effective" electrode, which is modified by the detection of the analyte whose microscopic conducting properties can be quantified.


Assuntos
Anticorpos Imobilizados/química , Técnicas Biossensoriais , Água Potável/microbiologia , Escherichia coli O157/isolamento & purificação , Impedância Elétrica , Eletrodos , Escherichia coli O157/patogenicidade , Ouro/química , Humanos , Limite de Detecção , Microbiologia da Água
2.
Molecules ; 22(8)2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800072

RESUMO

By exploiting the regioselective protection of the hydroxyl groups of silibinin along with the well-known phosphoramidite chemistry, we have developed an efficient strategy for the synthesis of new silibinin-modified species, which we have named Phosphate-Linked Silibinin Dimers (PLSd), in which the monomer units are linked by phosphodiester bonds. The antioxidant abilities of the new PLSd were estimated on HepG2 cells using DPPH free radical scavenging and xanthine/xanthine oxidase assays. The new phosphate-metabolites showed a higher anti-oxidant activity than the silibinin, as well as very low toxicity. The ability to scavenge reactive oxygen species (ROS) such as singlet oxygen () and hydroxyl radical () reveals that the two dimers are able to scavenge about two times more effectively than silibinin. Finally, solubility studies have shown that the PLSd present good water solubility (more than 20 mg·L-1) under circumneutral pH values, whereas the silibinin was found to be very poorly soluble (less than 0.4 mg·L-1) and not stable under alkaline conditions. Together, the above promising results warrant further investigation of the future potential of the PLSd as anti-oxidant metabolites within the large synthetic polyphenols field.


Assuntos
Antioxidantes/síntese química , Fosfatos/química , Polifenóis/síntese química , Silimarina/síntese química , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Células Hep G2 , Humanos , Radical Hidroxila/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Silibina , Silimarina/farmacologia , Solubilidade , Xantina/metabolismo , Xantina Oxidase/metabolismo
3.
Sci Rep ; 8(1): 16137, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382128

RESUMO

Salmonella Typhimurium is one of the main causes of outbreaks and sporadic cases of human gastroenteritis. At present, the rapid detection of this pathogen is a major goal of biosensing technology applied to food safety. In fact, ISO standardized culture method takes up to ten days to provide a reliable response. In this paper, we describe a relatively simple protocol for detecting Salmonella Typhimurium in chicken meat based on a Quartz-Crystal Microbalance (QCM), which leads to a limit of detection (LOD) less than of 10° CFU/mL and requires a pre-enrichment step lasting only 2 h at 37 °C. The reliability of the proposed immunosensor has been demonstrated through the validation of the experimental results with ISO standardized culture method. The cost-effectiveness of the procedure and the rapidity of the QCM-based biosensor in providing the qualitative response make the analytical method described here suitable for applications in food inspection laboratory and throughout the chain production of food industry.


Assuntos
Técnicas Biossensoriais/métodos , Alimentos , Técnicas de Microbalança de Cristal de Quartzo , Salmonella typhimurium/imunologia , Animais , Especificidade de Anticorpos/imunologia , Galinhas/microbiologia , Carne/microbiologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA