Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38569927

RESUMO

GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare G-protein-coupled receptor 37-like 1 (GPR37L1) genetic variants found among 51,289 whole-exome sequences from the DiscovEHR cohort. Rare GPR37L1 coding variants were binned according to predicted pathogenicity and analyzed by sequence kernel association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate mitogen-activated protein kinase (MAPK) signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared with the wild-type receptor. In addition to signaling changes, knock-out (KO) of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a KO mouse line lacking Gpr37l1 was generated. Although KO animals did not recapitulate an acute migraine phenotype, the loss of this receptor produced sex-specific changes in anxiety-related disorders often seen in chronic migraineurs. Collectively, these observations define the existence of rare GPR37L1 variants associated with neuropsychiatric conditions in the human population and identify the signaling changes contributing to pathological processes.


Assuntos
Transtornos de Enxaqueca , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Camundongos , Masculino , Feminino , Camundongos Knockout , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/metabolismo , Camundongos Endogâmicos C57BL , Variação Genética/genética
2.
Addict Biol ; 25(6): e12844, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31709687

RESUMO

Developing new medications for the treatment of cocaine dependence continues to be a research priority. Compelling evidence indicates that mixed opioid receptor agonists, particularly bifunctional compounds that target nociceptin/orphanin FQ peptide (NOP) and mu opioid receptors, may be useful for the treatment of cocaine addiction. Here, we verify that potent and selective pharmacological activation of NOP receptors is sufficient to reduce relevant facets of cocaine addiction in animal models. Accordingly, we determined whether systemic injections of the small molecule AT-312 (0, 1, 3 mg/kg) could reduce operant cocaine self-administration, motivation for cocaine, and vulnerability to cocaine relapse in rats. Results indicate that a potent and selective NOP receptor agonist was equally efficacious in reducing the number of cocaine infusions in short (1-hour), as well as long (6-hour) access sessions. When tested on an economic-demand reinforcement schedule, AT-312 reduced Q0 , the parameter that describes the amount of drug consumed at zero price, while leaving the parameter α, a measure of motivation for drug consumption, unaltered. Furthermore, AT-312 successfully reduced conditioned reinstatement of cocaine seeking. In contrast, the NOP receptor agonist did not modify food self-administration. Blockade of the NOP receptor with the antagonist SB-612111 prevented the effect of AT-312 in decreasing cocaine-reinforced responding under a 2-hour fixed ratio 1 schedule, suggesting a NOP receptor-mediated mechanism. This work demonstrates that potent and selective activation of NOP receptors is sufficient to decrease cocaine taking and seeking behaviors in rats.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/administração & dosagem , Receptores Opioides/agonistas , Animais , Buprenorfina , Cicloeptanos/metabolismo , Indóis/metabolismo , Masculino , Piperidinas/metabolismo , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração , Receptor de Nociceptina
3.
Alcohol Clin Exp Res ; 43(10): 2167-2178, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31386211

RESUMO

BACKGROUND: The nociceptin/orphanin FQ opioid peptide (NOP) receptor and its endogenous ligand N/OFQ have been implicated in the regulation of drug and alcohol use disorders (AUD). In particular, evidence demonstrated that NOP receptor activation blocks reinforcing and motivating effects of alcohol across a range of behavioral measures, including alcohol intake, conditioned place preference, and vulnerability to relapse. METHODS: Here, we show the effects of pharmacological activation and inhibition of NOP receptors on binge-like alcohol consumption, as measured by the "drinking in the dark" (DID) model in C57BL/6J mice. RESULTS: We found that 2 potent and selective NOP agonists AT-202 (0, 0.3, 1, 3 mg/kg) and AT-312 (0, 0.3, 1 mg/kg) did not affect binge alcohol drinking at doses that do not affect locomotor activity. AT-202 also failed to alter DID behavior when administered to mice previously exposed to chronic alcohol treatment with an alcohol-containing liquid diet. Conversely, treatment with either the high affinity NOP receptor antagonist SB-612111 (0, 3, 10, 30 mg/kg) or the selective antagonist LY2817412 (0, 3, 10, 30 mg/kg) decreased binge drinking. SB-612111 was effective at all doses examined, and LY2817412 was effective at 30 mg/kg. Consistently, NOP receptor knockout mice consumed less alcohol compared to wild type. SB-612111 reduced DID and increased sucrose consumption at doses that do not appear to affect locomotor activity. However, the high dose of SB-612111 (30 mg/kg) reduced alcohol intake but failed to inhibit preference in a 2-bottle choice DID model that can assess moderate alcohol intake. CONCLUSIONS: The present results suggest that NOP receptor inhibition rather than activation may represent a valuable approach for treatment of AUD characterized by excessive alcohol consumption such as binge drinking.


Assuntos
Dissuasores de Álcool/uso terapêutico , Consumo de Bebidas Alcoólicas/prevenção & controle , Antagonistas de Entorpecentes/uso terapêutico , Receptores Opioides/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/psicologia , Depressores do Sistema Nervoso Central/sangue , Cicloeptanos/farmacologia , Escuridão , Relação Dose-Resposta a Droga , Etanol/sangue , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Piperidinas/farmacologia , Receptores Opioides/agonistas , Receptores Opioides/genética , Receptor de Nociceptina
4.
Handb Exp Pharmacol ; 254: 165-186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119465

RESUMO

Since the discovery of the NOP receptor and N/OFQ as the endogenous ligand, evidence has appeared demonstrating the involvement of this receptor system in pain. This was not surprising for members of the opioid receptor and peptide families, particularly since both the receptor and N/OFQ are highly expressed in brain regions involved in pain, spinal cord, and dorsal root ganglia. What has been surprising is the complicated picture that has emerged from 25 years of research. The original finding that N/OFQ decreased tail flick and hotplate latency, when administered i.c.v., led to the hypothesis that NOP receptor antagonists could have analgesic activity without abuse liability. However, as data accumulated, it became clear that not only the potency but the activity per se was different when N/OFQ or small molecule NOP agonists were administered in the brain versus the spinal cord and it also depended upon the pain assay used. When administered systemically, NOP receptor agonists are generally ineffective in attenuating heat pain but are antinociceptive in an acute inflammatory pain model. Most antagonists administered systemically have no antinociceptive activity of their own, even though selective peptide NOP antagonists have potent antinociceptive activity when administered i.c.v. Chronic pain models provide different results as well, as small molecule NOP receptor agonists have potent anti-allodynic and anti-hyperalgesic activity after systemic administration. A considerable number of electrophysiological and anatomical experiments, in particular with NOP-eGFP mice, have been conducted in an attempt to explain the complicated profile resulting from NOP receptor modulation, to examine receptor plasticity, and to elucidate mechanisms by which selective NOP agonists, bifunctional NOP/mu agonists, or NOP receptor antagonists modulate acute and chronic pain.


Assuntos
Analgesia , Analgésicos/farmacologia , Peptídeos Opioides/farmacologia , Receptores Opioides , Analgésicos/uso terapêutico , Animais , Hiperalgesia , Camundongos , Peptídeos Opioides/química , Peptídeos Opioides/metabolismo , Manejo da Dor , Receptores Opioides/química , Receptores Opioides/metabolismo , Nociceptina
5.
Brain Behav Immun ; 64: 320-329, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28167117

RESUMO

Binge alcohol drinking has emerged as a typical phenomenon in young people. This pattern of drinking, repeatedly leading to extremely high blood and brain alcohol levels and intoxication is associated with severe risks of neurodegeneration and cognitive damage. Mechanisms involved in excitotoxicity and neuroinflammation are pivotal elements in alcohol-induced neurotoxicity. Evidence has demonstrated that PPARγ receptor activation shows anti-inflammatory and neuroprotective properties. Here we examine whether treatment with the PPARγ agonist pioglitazone is beneficial in counteracting neurodegeneration, neuroinflammation and cognitive damage produced by binge alcohol intoxication. Adult Wistar rats were subjected to a 4-day binge intoxication procedure, which is commonly used to model excessive alcohol consumption in humans. Across the 4-day period, pioglitazone (0, 30, 60mg/kg) was administered orally twice daily at 12-h intervals. Degenerative cells were detected by fluoro-jade B (FJ-B) immunostaining in brain regions where expression of pro-inflammatory cytokines was also determined. The effects of pioglitazone on cognitive function were assessed in an operant reversal learning task and the Morris water maze task. Binge alcohol exposure produced selective neuronal degeneration in the hippocampal dentate gyrus and the adjacent entorhinal cortex. Pioglitazone reduced FJ-B positive cells in both regions and prevented alcohol-induced expression of pro-inflammatory cytokines. Pioglitazone also rescued alcohol-impaired reversal learning in the operant task and spatial learning deficits in the Morris water maze. These findings demonstrate that activation of PPARγ protects against neuronal and cognitive degeneration elicited by binge alcohol exposure. The protective effect of PPARγ agonist appears to be linked to inhibition of pro-inflammatory cytokines.


Assuntos
Comportamento Animal/efeitos dos fármacos , Etanol/toxicidade , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , PPAR gama/agonistas , Tiazolidinedionas/administração & dosagem , Animais , Concentração Alcoólica no Sangue , Citocinas/metabolismo , Etanol/administração & dosagem , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Atividade Motora/efeitos dos fármacos , Neurônios/patologia , Pioglitazona , Ratos Wistar , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
6.
J Neurosci ; 35(33): 11682-93, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26290245

RESUMO

The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [(35)S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with µ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. SIGNIFICANCE STATEMENT: The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native NOP receptor. These knock-in mice have NOP receptors that function both in vitro and in vivo and have provided a detailed characterization of NOP receptors in brain, spinal cord, and DRG neurons. They appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos , Neurônios/citologia , Neurônios/metabolismo , Receptores Opioides/metabolismo , Frações Subcelulares/metabolismo , Animais , Células Cultivadas , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Transgênicos , Imagem Molecular/métodos , Receptores Opioides/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/ultraestrutura , Distribuição Tecidual , Receptor de Nociceptina
7.
Addict Biol ; 21(4): 859-72, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26037332

RESUMO

Oleoylethanolamide (OEA) is a satiety factor that controls motivational responses to dietary fat. Here we show that alcohol administration causes the release of OEA in rodents, which in turn reduces alcohol consumption by engaging peroxisome proliferator-activated receptor-alpha (PPAR-α). This effect appears to rely on peripheral signaling mechanisms as alcohol self-administration is unaltered by intracerebral PPAR-α agonist administration, and the lesion of sensory afferent fibers (by capsaicin) abrogates the effect of systemically administered OEA on alcohol intake. Additionally, OEA is shown to block cue-induced reinstatement of alcohol-seeking behavior (an animal model of relapse) and reduce the severity of somatic withdrawal symptoms in alcohol-dependent animals. Collectively, these findings demonstrate a homeostatic role for OEA signaling in the behavioral effects of alcohol exposure and highlight OEA as a novel therapeutic target for alcohol use disorders and alcoholism.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/metabolismo , Alcoolismo/psicologia , Endocanabinoides/farmacologia , Ácidos Oleicos/farmacologia , Resposta de Saciedade/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , PPAR alfa/efeitos dos fármacos , PPAR alfa/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
8.
Addict Biol ; 19(1): 27-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22500955

RESUMO

Excessive ethanol (EtOH) use leads to impaired memory and cognition. Using a rat model of binge-like intoxication, we tested whether elevated corticosterone (Cort) levels contribute to the neurotoxic consequences of EtOH exposure. Rats were adrenalectomized (Adx) and implanted with cholesterol pellets, or cholesterol pellets containing Cort in order to achieve basal, medium, or high blood concentrations of Cort. Intragastric EtOH or an isocaloric control solution was given three times daily for 4 days to achieve blood alcohol levels ranging between 200 and 350 mg/dl. Mean 24-hour plasma levels of Cort were ∼110 and ∼40 ng/ml in intact EtOH-treated and intact control animals, respectively. Basal Cort replacement concentrations in EtOH-treated Adx animals did not exacerbate alcohol-induced neurodegeneration in the hippocampal dentate gyrus (DG) or the entorhinal cortex (EC) as observed by amino-cupric silver staining. In contrast, Cort replacement pellets resulting in plasma Cort levels twofold higher (medium) than normal, or greater than twofold higher (high) in Adx-Cort-EtOH animals increased neurodegeneration. In separate experiments, pharmacological blockade of the Type II glucocorticoid (GC) receptor was initiated with mifepristone (RU38486; 0, 5, 15 mg/kg/day, i.p.). At the higher dose, mifepristone decreased the number of degenerating hippocampal DG cells in binge-EtOH-treated intact animals, whereas, only a trend for reduction was observed in 15 mg/kg/day mifepristone-treated animals in the EC, as determined by fluoro-jade B staining. These results suggest that elevated circulating Cort in part mediates EtOH-induced neurotoxicity in the brain through activation of Type II GC receptors.


Assuntos
Corticosterona/metabolismo , Giro Denteado/efeitos dos fármacos , Córtex Entorrinal/efeitos dos fármacos , Etanol/toxicidade , Antagonistas de Hormônios/farmacologia , Mifepristona/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Adrenalectomia , Transtornos do Sistema Nervoso Induzidos por Álcool/etiologia , Intoxicação Alcoólica/metabolismo , Intoxicação Alcoólica/patologia , Intoxicação Alcoólica/fisiopatologia , Análise de Variância , Animais , Consumo Excessivo de Bebidas Alcoólicas/complicações , Colesterol/administração & dosagem , Corticosterona/administração & dosagem , Corticosterona/farmacologia , Giro Denteado/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Implantes de Medicamento/administração & dosagem , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Etanol/administração & dosagem , Etanol/sangue , Fluoresceínas , Antagonistas de Hormônios/administração & dosagem , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Mifepristona/administração & dosagem , Fármacos Neuroprotetores , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Coloração pela Prata , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
9.
J Med Chem ; 67(1): 529-542, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38151460

RESUMO

Growing evidence suggests that inhibition of the α3ß4 nicotinic acetylcholine receptor (nAChR) represents a promising therapeutic strategy to treat cocaine use disorder. Recently, aristoquinoline (1), an alkaloid from Aristotelia chilensis, was identified as an α3ß4-selective nAChR inhibitor. Here, we prepared 22 derivatives of 1 and evaluated their ability to inhibit the α3ß4 nAChR. These studies revealed structure-activity trends and several compounds with increased potency compared to 1 with few off-target liabilities. Additional mechanistic studies indicated that these compounds inhibit the α3ß4 nAChR noncompetitively, but do not act as channel blockers, suggesting they are negative allosteric modulators. Finally, using a cocaine-primed reinstatement paradigm, we demonstrated that 1 significantly attenuates drug-seeking behavior in an animal model of cocaine relapse. The results from these studies further support a role for the α3ß4 nAChR in the addictive properties of cocaine and highlight the possible utility of aristoquinoline derivatives in treating cocaine use disorder.


Assuntos
Alcaloides , Cocaína , Quinolinas , Receptores Nicotínicos , Animais , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Comportamento de Procura de Droga , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/uso terapêutico
10.
Alcohol Clin Exp Res ; 37(8): 1351-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23550625

RESUMO

BACKGROUND: Pioglitazone is a selective peroxisome proliferator-activated receptor γ (PPARγ) agonist used for the treatment of insulin resistance and type 2 diabetes. Previous studies conducted in our laboratory showed that activation of PPARγ by pioglitazone reduces alcohol drinking, stress-induced relapse, and alcohol withdrawal syndrome in rats. Pioglitazone was not able to prevent relapse elicited by alcohol cues. Conversely, the nonselective opioid antagonist naltrexone has been shown to reduce alcohol drinking and cue- but not stress-induced relapse in rodents. METHODS: Based on these findings, this study was sought to determine the efficacy of pioglitazone and naltrexone combination on alcohol intake and relapse behavior. Genetically selected alcohol-preferring Marchigian Sardinian (msP) rats were used for the study. RESULTS: Pioglitazone (10 and 30 mg/kg) and naltrexone (0.25 and 1.0 mg/kg) each individually reduced alcohol drinking in msP rats. The combination of the 2 drugs resulted in a more potent alcohol drinking reduction than single agents. Confirming previous studies, pioglitazone (10 and 30 mg/kg) significantly reduced relapse induced by the pharmacological stressor yohimbine (1.25 mg/kg) but not by cues predictive of alcohol availability. Conversely, naltrexone reduced reinstatement of drug seeking elicited by alcohol cues but not by yohimbine. CONCLUSIONS: The drug combination was effective in reducing both relapse behaviors. These findings open new vistas in the use pioglitazone in combination with naltrexone for the treatment of alcoholism.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Naltrexona/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , PPAR gama/metabolismo , Tiazolidinedionas/uso terapêutico , Animais , Sinais (Psicologia) , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Hipoglicemiantes/farmacologia , Masculino , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Pioglitazona , Ratos , Tiazolidinedionas/farmacologia , Ioimbina
11.
Addict Biol ; 18(4): 644-53, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22734646

RESUMO

Pregabalin (Lyrica™) is a structural analog of γ-aminobutyric acid (GABA) and is approved by the FDA for partial epilepsy, neuropathic pain and generalized anxiety disorders. Pregabalin also reduces excitatory neurotransmitter release and post-synaptic excitability. Recently, we demonstrated that pregabalin reduced alcohol intake and prevented relapse to the alcohol seeking elicited by stress or environmental stimuli associated with alcohol availability. Here, we sought to extend these findings by examining the effect of pregabalin on cocaine self-administration (0.25 mg/infusion) and on cocaine seeking elicited by both conditioned stimuli and stress, as generated by administration of yohimbine (1.25 mg/kg). The results showed that oral administration of pregabalin (0, 10 or 30 mg/kg) reduced self-administration of cocaine over an extended period (6 hours), whereas it did not modify self-administration of food. In cocaine reinstatement studies, pregabalin (10 and 30 mg/kg) abolished the cocaine seeking elicited by both the pharmacological stressor yohimbine and the cues predictive of cocaine availability. Overall, these results demonstrate that pregabalin may have potential in the treatment of some aspects of cocaine addiction.


Assuntos
Anticonvulsivantes/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cocaína/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Ácido gama-Aminobutírico/análogos & derivados , Antagonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Análise de Variância , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/prevenção & controle , Sinais (Psicologia) , Aprendizagem por Discriminação/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Humanos , Masculino , Pregabalina , Ratos , Ratos Wistar , Reforço Psicológico , Prevenção Secundária , Autoadministração , Estresse Fisiológico/efeitos dos fármacos , Ioimbina/administração & dosagem , Ioimbina/farmacologia , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia , Ácido gama-Aminobutírico/fisiologia
12.
Pain ; 164(11): 2540-2552, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310430

RESUMO

ABSTRACT: Migraine is a disabling disorder characterized by recurrent headaches, accompanied by abnormal sensory sensitivity and anxiety. Despite extensive historical use of cannabis in headache disorders, there is limited research on the nonpsychoactive cannabidiol (CBD) for migraine and there is no scientific evidence to prove that CBD is an effective treatment. The effects of CBD are examined here using a calcitonin gene-related peptide (CGRP)-induced migraine model that provides measures of cephalic allodynia, spontaneous pain, altered light sensitivity (photophobia), and anxiety-like behavior in C57BL/6J mice. A single administration of CGRP induced facial hypersensitivity in both female and male mice. Repeated CGRP treatment produced progressively decreased levels in basal thresholds of allodynia in females, but not in males. A single CBD administration protected both females and males from periorbital allodynia induced by a single CGRP injection. Repeated CBD administration prevented increased levels of basal allodynia induced by repeated CGRP treatment in female mice and did not lead to responses consistent with migraine headache as occurs with triptans. Cannabidiol, injected after CGRP, reversed CGRP-evoked allodynia. Cannabidiol also reduced spontaneous pain traits induced by CGRP administration in female mice. Finally, CBD blocked CGRP-induced anxiety in male mice, but failed in providing protection from CGRP-induced photophobia in females. These results demonstrate the efficacy of CBD in preventing episodic and chronic migraine-like states with reduced risk of causing medication overuse headache. Cannabidiol also shows potential as an abortive agent for treating migraine attacks and headache-related conditions such as spontaneous pain and anxiety.

13.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461723

RESUMO

GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare GPR37L1 genetic variants found among 51,289 whole exome sequences from the DiscovEHR cohort. Briefly, rare GPR37L1 coding variants were binned according to predicted pathogenicity, and analyzed by Sequence Kernel Association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were then functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate MAPK signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared to the wild-type receptor. In addition to signaling changes, knockout of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a knockout (KO) mouse line lacking Gpr37L1 was generated, revealing loss of this receptor produced sex-specific changes implicated in migraine-related disorders. Collectively, these observations define the existence of rare GPR37L1 variants in the human population that are associated with neuropsychiatric conditions and identify the underlying signaling changes that are implicated in the in vivo actions of this receptor in pathological processes leading to anxiety and migraine. SIGNIFICANCE STATEMENT: G-protein coupled receptors (GPCRs) represent a diverse group of membrane receptors that contribute to a wide range of diseases and serve as effective drug targets. However, a number of these receptors have no identified ligands or functions, i.e., orphan receptors. Over the past decade, advances have been made, but there is a need for identifying new strategies to reveal their roles in health and disease. Our results highlight the utility of rare variant analyses of orphan receptors for identifying human disease associations, coupled with functional analyses in relevant cellular and animal systems, to ultimately reveal their roles as novel drug targets for treatment of neurological disorders that lack wide-spread efficacy.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35798174

RESUMO

Cocaine use disorder (CUD) is a persistent public health problem for which no effective medications are available. PPL-103 is an opioid receptor ligand with partial agonist activity at mu, kappa and delta opioid receptors, with a greater efficacy for kappa and low efficacy at mu receptors. Because chronic cocaine use induces changes in the kappa opioid receptor/dynorphin system, we hypothesized that a kappa partial agonist, such as PPL-103, would attenuate the aversive properties of the upregulated kappa system, resulting in effective treatment approach for CUD. We tested the effects of PPL-103 on cocaine self-administration models that recapitulate core aspects of CUD in humans. We found that PPL-103 reduced both long and short access cocaine self-administration, motivation to respond for cocaine, and binge-like cocaine taking, in rats. Operant responding for food, fentanyl and locomotor behavior were not altered at doses that decreased cocaine infusions. Repeated PPL-103 treatment did not lead to tolerance development. PPL-103 also reduced both priming- and cue-induced reinstatement of cocaine seeking, being more effective in the former. Surprisingly, PPL-103 reduced self-administration parameters and reinstatement in rats previously treated with the long-acting kappa receptor antagonist JDTic more potently than in non-JDTic treated animals, whereas naltrexone injected to rats subsequent to JDTic administration increased self-administration, suggesting that the partial mu agonist activity, rather than kappa agonism is important for reduction in cocaine taking and seeking. However, partial kappa activation seems to increase safety by limiting dysphoria, tolerance and addiction development. PPL-103 displays a desirable profile as a possible CUD pharmacotherapy.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Humanos , Naltrexona/farmacologia , Ratos , Receptores Opioides kappa , Receptores Opioides mu , Autoadministração
15.
Neuropharmacology ; 211: 109045, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378170

RESUMO

The search for new and effective treatments for cocaine use disorder (CUD) is a priority. We determined whether PPL-138 (BU10038), a compound with partial agonist activity at both nociceptin opioid peptide (NOP) and mu-opioid receptors, reduces cocaine consumption, reinstatement, and whether the compound itself produces reinforcing effects in rats. Using an intermittent access (IntA) cocaine self-administration procedure, we found that PPL-138 (0.1 and 0.3 mg/kg) effectively decreased the total number of cocaine infusions and burst-like cocaine intake in both male and female rats. Responses for food in an IntA model of food self-administration were not altered for either sex, although locomotor activity was increased in female but not male rats. Blockade of NOP receptors with the selective antagonist J-113397 (5 mg/kg) did not prevent the PPL-138-induced suppression of cocaine self-administration, whereas blockade of mu-opioid receptors by naltrexone (1 mg/kg) reversed such effect. Consistently, treatment with morphine (1, 3, and 10 mg/kg) dose-dependently reduced IntA cocaine self-administration measures. PPL-138 also reduced reinstatement of cocaine seeking at all doses examined. Although an initial treatment with PPL-138 (2.5, 10, and 40 µg/kg/infusion) appeared rewarding, the compound did not maintain self-administration behavior. Animals treated with PPL-138 showed initial suppression of cocaine self-administration, which was eliminated following repeated daily dosing. However, suppression of cocaine self-administration was retained when subsequent PPL-138 treatments were administered 48 h apart. These findings demonstrate that the approach of combining partial NOP/mu-opioid activation successfully reduces cocaine use, but properties of PPL-138 seem to depend on the timing of drug administration.


Assuntos
Cocaína , Animais , Cocaína/farmacologia , Relação Dose-Resposta a Droga , Feminino , Isoquinolinas , Masculino , Naltrexona/análogos & derivados , Peptídeos Opioides , Fenilpropionatos , Ratos , Receptores Opioides/agonistas , Receptores Opioides mu/agonistas , Autoadministração , Nociceptina
16.
Alcohol Clin Exp Res ; 35(2): 194-202, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21058960

RESUMO

Converging research evidence suggests that alcohol and food-seeking behaviors share common neural pathways. There is preclinical and clinical evidence linking the consumption of sweets to alcohol intake in both animals and humans. In addition, a growing body of animal and human literature suggests the involvement of "feeding-related" peptides in alcohol-seeking behavior. In particular, both central and peripheral appetitive peptides have shown a possible role in alcohol dependence. The present mini-review will summarize the literature on the link between sweet preference and alcohol dependence, and on the role of feeding-related peptides in alcohol dependence. Specifically, in an attempt to narrow the field, the present mini-review will focus on 2 specific pathways, the central neuropeptide Y and the peripheral gut peptide ghrelin. Although more research is needed, data available suggest that studying feeding-related pathways in alcohol dependence may have theoretic, biologic, diagnostic, and therapeutic implications.


Assuntos
Consumo de Bebidas Alcoólicas , Alcoolismo , Comportamento Alimentar , Grelina/fisiologia , Neuropeptídeo Y/fisiologia , Animais , Regulação do Apetite , Comportamento Aditivo , Humanos , Vias Neurais , Recidiva , Recompensa , Percepção Gustatória
17.
Alcohol Clin Exp Res ; 35(4): 747-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21223310

RESUMO

BACKGROUND: Alcohol withdrawal refers to a cluster of symptoms that may occur from suddenly ceasing the use of alcohol after chronic or prolonged ingestion. These symptoms make alcohol abstinence difficult and increase the risk of relapse in recovering alcoholics. In previous studies, we demonstrated that treatment with Nociceptin/orphanin FQ (N/OFQ) significantly reduces alcohol consumption and attenuates alcohol-seeking behavior induced by environmental conditioning factors or by stress in rats. In this study, we evaluated whether activation of brain NOP receptors may also attenuate alcohol withdrawal signs in rats. METHODS: For this purpose, animals were subjected to a 6-day chronic alcohol intoxication (by intragastric administration), and at 8, 10, and 12 hours following cessation of alcohol exposure, they were treated intracerebroventricularly (ICV) with N/OFQ (0.0, 1.0, and 3.0 µg/rat). Somatic withdrawal signs were scored after ICV treatment. In a subsequent experiment, to evaluate N/OFQ effects on alcohol withdrawal-induced anxiety, another group of rats was subjected to ethanol intoxication and after 1 week was tested for anxiety behavior in the elevated plus maze (EPM). In the last experiment, an additional group of rats was tested for anxiety elicited by acute ethanol intoxication (hangover anxiety). For this purpose, animals received an acute dose (3.0 g/kg) of 20% alcohol and 12 hour later were tested in the EPM following ICV N/OFQ (0.0, 1.0, and 2.0 µg/rat). RESULTS: Results showed that N/OFQ significantly reduced the expression of somatic withdrawal signs and reversed anxiety-like behaviors associated with both chronic and acute alcohol intoxication. N/OFQ did not affect anxiety scores in nondependent animals. CONCLUSIONS: These findings suggest that the N/OFQ-NOP receptor system may represent a promising target for the development of new treatments to ameliorate alcohol withdrawal symptoms.


Assuntos
Ansiedade/tratamento farmacológico , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Neurotransmissores/farmacologia , Peptídeos Opioides/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores Opioides/agonistas , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Alcoolismo/metabolismo , Animais , Ansiedade/induzido quimicamente , Encéfalo , Depressores do Sistema Nervoso Central/sangue , Modelos Animais de Doenças , Etanol/sangue , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar , Síndrome de Abstinência a Substâncias/metabolismo , Fatores de Tempo , Receptor de Nociceptina
18.
CNS Drugs ; 35(6): 591-607, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34057709

RESUMO

The nociceptin opioid peptide (NOP) receptor and its endogenous ligand nociceptin/orphanin FQ (N/OFQ) are the fourth members of the opioid receptor and opioid peptide families. Although they have considerable sequence homology to the other family members, they are not considered opioid per se because they do not have pharmacological profiles similar to the other family members. The number of NOP receptors in the brain is higher than the other family members, and NOP receptors can be found throughout the brain. Because of the widespread distribution of NOP receptors, N/OFQ and other peptide and small molecule agonists and antagonists have extensive CNS activities. Originally thought to be anti-opioid, NOP receptor agonists block some opioid activities, potentiate others, and modulate other activities not affected by traditional opiates. Because the effect of receptor activation can be dependent upon site of administration, state of the animal, and other variables, the study of NOP receptors has been fraught with contradictions and inconsistencies. In this article, the actions and controversies pertaining to NOP receptor activation and inhibition are discussed with respect to CNS disorders including pain (acute, chronic, and migraine), drug abuse, anxiety and depression. In addition, progress towards clinical use of NOP receptor-directed compounds is discussed.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Transtornos Mentais/tratamento farmacológico , Receptores Opioides/metabolismo , Animais , Doenças do Sistema Nervoso Central/fisiopatologia , Desenvolvimento de Medicamentos , Humanos , Transtornos Mentais/fisiopatologia , Terapia de Alvo Molecular , Peptídeos Opioides/metabolismo , Receptor de Nociceptina , Nociceptina
19.
Neurobiol Learn Mem ; 94(4): 538-46, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20849966

RESUMO

Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected.


Assuntos
Depressores do Sistema Nervoso Central/intoxicação , Discriminação Psicológica/efeitos dos fármacos , Etanol/intoxicação , Comportamento Exploratório/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Comportamento Espacial/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/patologia , Análise de Variância , Animais , Morte Celular , Depressores do Sistema Nervoso Central/sangue , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Discriminação Psicológica/fisiologia , Modelos Animais de Doenças , Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/patologia , Etanol/sangue , Comportamento Exploratório/fisiologia , Masculino , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Neurônios/patologia , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Recuperação de Função Fisiológica , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologia , Comportamento Espacial/fisiologia , Fatores de Tempo
20.
Neuropharmacology ; 170: 108029, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278976

RESUMO

Migraine is an extraordinarily prevalent and disabling headache disorder that affects one billion people worldwide. Throbbing pain is one of several migraine symptoms including sensitivity to light (photophobia), sometimes to sounds, smell and touch. The basic mechanisms underlying migraine remain inadequately understood, and current treatments (with triptans being the primary standard of care) are not well tolerated by some patients. NOP (Nociceptin OPioid) receptors, the fourth member of the opioid receptor family, are expressed in the brain and periphery with particularly high expression known to be in trigeminal ganglia (TG). The aim of our study was to further explore the involvement of the NOP receptor system in migraine. To this end, we used immunohistochemistry to examine NOP receptor distribution in TG and trigeminal nucleus caudalus (TNC) in mice, including colocalization with specific cellular markers, and used nitroglycerin (NTG) models of migraine to assess the influence of the selective NOP receptor agonist, Ro 64-6198, on NTG-induced pain (sensitivity of paw and head using von Frey filaments) and photophobia in mice. Our immunohistochemical studies with NOP-eGFP knock-in mice indicate that NOP receptors are on the majority of neurons in the TG and are also very highly expressed in the TNC. In addition, Ro 64-6198 can dose dependently block NTG-induced paw and head allodynia, an effect that is blocked by the NOP antagonist, SB-612111. Moreover, Ro 64-6198, can decrease NTG-induced light sensitivity in mice. These results suggest that NOP receptor agonists should be futher explored as treatment for migraine symptoms. This article is part of the special issue on Neuropeptides.


Assuntos
Imidazóis/uso terapêutico , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Nitroglicerina/toxicidade , Receptores Opioides/agonistas , Compostos de Espiro/uso terapêutico , Núcleos do Trigêmeo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos de Enxaqueca/metabolismo , Receptores Opioides/metabolismo , Compostos de Espiro/farmacologia , Núcleos do Trigêmeo/metabolismo , Receptor de Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA