Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 50(14): 2037-48, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21556105

RESUMO

Light absorption by particulate impurities in snow and ice can affect the surface albedo and is important for the climate. The absorption properties of these particles can be determined by collecting and melting snow samples and extracting the particulate material by filtration of the meltwater. This paper describes the optical design and testing of a new instrument to measure the absorption spectrum from 400 to 750 nm wavelength of the particles collected on filters using an "integrating-sandwich" configuration. The measured absorption is shown to be unaffected by scattering of light from the deposited particulates. A set of calibration standards is used to derive an upper limit for the concentration of black carbon (BC) in the snow. The wavelength dependence of the absorption spectra from 450 to 600 nm is used to calculate an absorption Ångstrom exponent for the aerosol. This exponent is used to estimate the actual BC concentration in the snow samples as well as the relative contributions of BC and non-BC constituents to the absorption of solar radiation integrated over the wavelength band 300 to 750 nm.

2.
Science ; 354(6316): 1119-1124, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789796

RESUMO

Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

3.
Science ; 329(5998): 1488-92, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20847262

RESUMO

Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

4.
Environ Sci Technol ; 43(11): 4016-21, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19569324

RESUMO

Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.


Assuntos
Poluentes Atmosféricos , Carbono/química , Monitoramento Ambiental , Neve/química , Poluição do Ar/análise , Regiões Árticas , Groenlândia , América do Norte , Federação Russa
5.
Science ; 315(5813): 816-20, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17204609

RESUMO

We present a statistical representation of the aggregate effects of deep convection on the chemistry and dynamics of the upper troposphere (UT) based on direct aircraft observations of the chemical composition of the UT over the eastern United States and Canada during summer. These measurements provide unique observational constraints on the chemistry occurring downwind of convection and the rate at which air in the UT is recycled. These results provide quantitative measures that can be used to evaluate global climate and chemistry models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA