RESUMO
Rift Valley fever virus (RVFV) has been the cause of disease outbreaks throughout Africa and the Arabian Peninsula, and the infection often results in heavy economic costs through loss of livestock. If RVFV, which is common to select agent lists of the US Department of Health and Human Services and the US Department of Agriculture, entered the United States, either by accidental or purposeful means, the effects could be substantial. A group of subject matter experts met in December 2009 to discuss potential implications of an introduction of RVF to the United States and review current modeling capabilities. This workshop followed a similar meeting held in April 2007. This report summarizes the 2 workshop proceedings. Discussions primarily highlighted gaps in current economic and epidemiologic RVF models as well as gaps in the overall epidemiology of the virus.
Assuntos
Surtos de Doenças/economia , Febre do Vale de Rift/economia , Febre do Vale de Rift/epidemiologia , Animais , Surtos de Doenças/veterinária , Humanos , Gado/virologia , Saúde Pública , Febre do Vale de Rift/transmissão , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/fisiologia , Estados Unidos/epidemiologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Zoonoses/virologiaRESUMO
BACKGROUND: Foot-and-mouth disease (FMD) is an economically important and highly contagious viral disease that affects cloven-hoofed domestic and wild animals. Virus isolation and enzyme-linked immunosorbent assay (ELISA) are the gold standard tests for diagnosis of FMD. As these methods are time consuming, assays based on viral nucleic acid amplification have been developed. RESULTS: A previously described real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay with high sensitivity and specificity under laboratorial and experimental conditions was used in the current study. To verify the applicability of this assay under field conditions in Brazil, 460 oral swabs from cattle were collected in areas free of FMD (n = 200) and from areas with outbreaks of FMD (n = 260). Three samples from areas with outbreaks of FMD were positive by real-time RT-PCR, and 2 of those samples were positive by virus isolation and ELISA. Four other samples were considered inconclusive by real-time RT-PCR (threshold cycle [Ct] > 40); whereas all 200 samples from an area free of FMD were real-time RT-PCR negative. CONCLUSION: real-time RT-PCR is a powerful technique for reliable detection of FMDV in a fraction of the time required for virus isolation and ELISA. However, it is noteworthy that lack of infrastructure in certain areas with high risk of FMD may be a limiting factor for using real-time RT-PCR as a routine diagnostic tool.