Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Nat Immunol ; 25(1): 129-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985858

RESUMO

Lymphocyte development consists of sequential and mutually exclusive cell states of proliferative selection and antigen receptor gene recombination. Transitions between each state require large, coordinated changes in epigenetic landscapes and transcriptional programs. How this occurs remains unclear. Here we demonstrate that in small pre-B cells, the lineage and stage-specific epigenetic reader bromodomain and WD repeat-containing protein 1 (BRWD1) reorders three-dimensional chromatin topology to affect the transition between proliferative and gene recombination molecular programs. BRWD1 regulated the switch between poised and active enhancers interacting with promoters, and coordinated this switch with Igk locus contraction. BRWD1 did so by converting chromatin-bound static to dynamic cohesin competent to mediate long-range looping. ATP-depletion revealed cohesin conversion to be the main energetic mechanism dictating dynamic chromatin looping. Our findings provide a new mechanism of cohesin regulation and reveal how cohesin function can be dictated by lineage contextual mechanisms to facilitate specific cell fate transitions.


Assuntos
Cromatina , Coesinas , Cromatina/genética , Células Precursoras de Linfócitos B , Regulação da Expressão Gênica , Diferenciação Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Nat Immunol ; 24(3): 487-500, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759711

RESUMO

The T cell repertoire of healthy mice and humans harbors self-reactive CD4+ conventional T (Tconv) cells capable of inducing autoimmunity. Using T cell receptor profiling paired with in vivo clonal analysis of T cell differentiation, we identified Tconv cell clones that are recurrently enriched in non-lymphoid organs following ablation of Foxp3+ regulatory T (Treg) cells. A subset of these clones was highly proliferative in the lymphoid organs at steady state and exhibited overt reactivity to self-ligands displayed by dendritic cells, yet were not purged by clonal deletion. These clones spontaneously adopted numerous hallmarks of follicular helper T (TFH) cells, including expression of Bcl6 and PD-1, exhibited an elevated propensity to localize within B cell follicles at steady state, and produced interferon-γ in non-lymphoid organs following sustained Treg cell depletion. Our work identifies a naturally occurring population of self-reactive TFH-like cells and delineates a previously unappreciated fate for self-specific Tconv cells.


Assuntos
Linfócitos T CD4-Positivos , Células T Auxiliares Foliculares , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Autoimunidade , Diferenciação Celular , Células Clonais , Fenótipo , Linfócitos T Auxiliares-Indutores , Linfócitos T CD4-Positivos/imunologia
3.
Immunity ; 57(1): 52-67.e10, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38091995

RESUMO

The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.


Assuntos
Movimento Celular , Pulmão , Mecanotransdução Celular , Neutrófilos , Animais , Camundongos , Membrana Celular , Canais Iônicos/genética , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Atividade Bactericida do Sangue/genética , Mecanotransdução Celular/genética
4.
Nat Immunol ; 21(6): 660-670, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341509

RESUMO

Within germinal centers (GCs), complex and highly orchestrated molecular programs must balance proliferation, somatic hypermutation and selection to both provide effective humoral immunity and to protect against genomic instability and neoplastic transformation. In contrast to this complexity, GC B cells are canonically divided into two principal populations, dark zone (DZ) and light zone (LZ) cells. We now demonstrate that, following selection in the LZ, B cells migrated to specialized sites within the canonical DZ that contained tingible body macrophages and were sites of ongoing cell division. Proliferating DZ (DZp) cells then transited into the larger DZ to become differentiating DZ (DZd) cells before re-entering the LZ. Multidimensional analysis revealed distinct molecular programs in each population commensurate with observed compartmentalization of noncompatible functions. These data provide a new three-cell population model that both orders critical GC functions and reveals essential molecular programs of humoral adaptive immunity.


Assuntos
Microambiente Celular/genética , Microambiente Celular/imunologia , Centro Germinativo/citologia , Centro Germinativo/fisiologia , Animais , Biomarcadores , Biologia Computacional/métodos , Imunofluorescência , Perfilação da Expressão Gênica , Genômica/métodos , Camundongos , Fosforilação , Proteoma , Proteômica/métodos , Transcriptoma
5.
Nat Immunol ; 20(10): 1393-1403, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31477919

RESUMO

In B lymphopoiesis, activation of the pre-B cell antigen receptor (pre-BCR) is associated with both cell cycle exit and Igk recombination. Yet how the pre-BCR mediates these functions remains unclear. Here, we demonstrate that the pre-BCR initiates a feed-forward amplification loop mediated by the transcription factor interferon regulatory factor 4 and the chemokine receptor C-X-C motif chemokine receptor 4 (CXCR4). CXCR4 ligation by C-X-C motif chemokine ligand 12 activates the mitogen-activated protein kinase extracellular-signal-regulated kinase, which then directs the development of small pre- and immature B cells, including orchestrating cell cycle exit, pre-BCR repression, Igk recombination and BCR expression. In contrast, pre-BCR expression and escape from interleukin-7 have only modest effects on B cell developmental transcriptional and epigenetic programs. These data show a direct and central role for CXCR4 in orchestrating late B cell lymphopoiesis. Furthermore, in the context of previous findings, our data provide a three-receptor system sufficient to recapitulate the essential features of B lymphopoiesis in vitro.


Assuntos
Linfócitos B/imunologia , Cadeias kappa de Imunoglobulina/genética , Células Precursoras de Linfócitos B/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores CXCR4/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Feminino , Fatores Reguladores de Interferon/genética , Linfopoese , Masculino , Camundongos , Receptores de Antígenos de Linfócitos B/genética , Receptores CXCR4/genética , Recombinação Genética
6.
Nat Immunol ; 19(12): 1366-1378, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420627

RESUMO

Thymocyte development requires a complex orchestration of multiple transcription factors. Ablating either TCF-1 or HEB in CD4+CD8+ thymocytes elicits similar developmental outcomes including increased proliferation, decreased survival, and fewer late Tcra rearrangements. Here, we provide a mechanistic explanation for these similarities by showing that TCF-1 and HEB share ~7,000 DNA-binding sites genome wide and promote chromatin accessibility. The binding of both TCF-1 and HEB was required at these shared sites for epigenetic and transcriptional gene regulation. Binding of TCF-1 and HEB to their conserved motifs in the enhancer regions of genes associated with T cell differentiation promoted their expression. Binding to sites lacking conserved motifs in the promoter regions of cell-cycle-associated genes limited proliferation. TCF-1 displaced nucleosomes, allowing for chromatin accessibility. Importantly, TCF-1 inhibited Notch signaling and consequently protected HEB from Notch-mediated proteasomal degradation. Thus, TCF-1 shifts nucleosomes and safeguards HEB, thereby enabling their cooperation in establishing the epigenetic and transcription profiles of CD4+CD8+ thymocytes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Regulação da Expressão Gênica/imunologia , Fator 1-alfa Nuclear de Hepatócito/imunologia , Linfopoese/imunologia , Timócitos/imunologia , Animais , Antígenos CD4/imunologia , Antígenos CD8/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Nat Immunol ; 16(10): 1094-103, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26301565

RESUMO

B lymphopoiesis requires that immunoglobulin genes be accessible to RAG1-RAG2 recombinase. However, the RAG proteins bind widely to open chromatin, which suggests that additional mechanisms must restrict RAG-mediated DNA cleavage. Here we show that developmental downregulation of interleukin 7 (IL-7)-receptor signaling in small pre-B cells induced expression of the bromodomain-family member BRWD1, which was recruited to a specific epigenetic landscape at Igk dictated by pre-B cell receptor (pre-BCR)-dependent Erk activation. BRWD1 enhanced RAG recruitment, increased gene accessibility and positioned nucleosomes 5' to each Jκ recombination signal sequence. BRWD1 thus targets recombination to Igk and places recombination within the context of signaling cascades that control B cell development. Our findings represent a paradigm in which, at any particular antigen-receptor locus, specialized mechanisms enforce lineage- and stage-specific recombination.


Assuntos
Histona Acetiltransferases/metabolismo , Imunoglobulinas/genética , Recombinação Genética/imunologia , Animais , Apoptose , Regulação para Baixo/imunologia , Histona Acetiltransferases/genética , Histona Acetiltransferases/imunologia , Interleucina-7/genética , Interleucina-7/imunologia , Camundongos , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
8.
Immunity ; 47(3): 481-497.e7, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930660

RESUMO

Transcriptional regulation during CD4+ T cell fate decisions enables their differentiation into distinct states, guiding immune responses toward antibody production via Tfh cells or inflammation by Teff cells. Tfh-Teff cell fate commitment is regulated by mutual antagonism between the transcription factors Bcl6 and Blimp-1. Here we examined how T cell receptor (TCR) signals establish and arbitrate Bcl6-Blimp-1 counter-antagonism. We found that the TCR-signal-induced transcription factor Irf4 is essential for the differentiation of Bcl6-expressing Tfh and Blimp-1-expressing Teff cells. Increased TCR signaling raised Irf4 amounts and promoted Teff cell fates at the expense of Tfh ones. Importantly, orthogonal induction of Irf4 expression redirected Tfh cell fate trajectories toward those of Teff. Mechanistically, we linked greater Irf4 abundance with its recruitment toward low-affinity binding sites within Teff cell cis-regulatory elements, including those of Prdm1. We propose that the Irf4 locus functions as the "reader" of TCR signal strength, and in turn, concentration-dependent activity of Irf4 "writes" T helper fate choice.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fatores Reguladores de Interferon/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Antígenos/imunologia , Sítios de Ligação , Diferenciação Celular/imunologia , Linhagem Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Imunização , Fatores Reguladores de Interferon/genética , Interleucina-2/metabolismo , Masculino , Camundongos , Camundongos Knockout , Motivos de Nucleotídeos , Ligação Proteica , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/citologia
9.
J Virol ; 98(2): e0172123, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38179947

RESUMO

Liver-specific ten-eleven translocation (Tet) methylcytosine dioxygenases 2 and 3 (Tet2 plus Tet3)-deficient hepatitis B virus (HBV) transgenic mice fail to support viral biosynthesis. The levels of viral transcription and replication intermediates are dramatically reduced. Hepatitis B core antigen is only observed in a very limited number of pericentral hepatocytes in a pattern that is similar to glutamate-ammonia ligase (Glul), a ß-catenin target gene. HBV transcript abundance in adult Tet-deficient mice resembles that observed in wild-type neonatal mice. Furthermore, the RNA levels of several ß-catenin target genes including Glul, Lhpp, Notun, Oat, Slc1a2, and Tbx3 in Tet-deficient mice were also similar to that observed in wild-type neonatal mice. As HBV transcription is regulated by ß-catenin, these findings support the suggestion that neonatal Tet deficiency might limit ß-catenin target gene expression, limiting viral biosynthesis. Additionally, HBV transgene DNA displays increased 5-methylcytosine (5mC) frequency at CpG sequences consistent with neonatal Tet deficiency being responsible for decreased developmental viral DNA demethylation mediated by 5mC oxidation to 5-hydroxymethylcytosine, a process that might be responsible for the reduction in cellular ß-catenin target gene expression and viral transcription and replication.IMPORTANCEChronic hepatitis B virus (HBV) infection causes significant worldwide morbidity and mortality. There are no curative therapies available to resolve chronic HBV infections, and the small viral genome limits molecular targets for drug development. An alternative approach to drug development is to target cellular genes essential for HBV biosynthesis. In the liver, ten-eleven translocation (Tet) genes encode cellular enzymes that are not essential for postnatal mouse development but represent essential activities for viral DNA demethylation and transcription. Consequently, Tet inhibitors may potentially be developed into therapeutic agents capable of inducing and/or maintaining HBV covalently closed circular DNA methylation, resulting in transcriptional silencing and the resolution of chronic viral infection.


Assuntos
Proteínas de Ligação a DNA , Dioxigenases , Vírus da Hepatite B , Animais , Camundongos , beta Catenina/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Desmetilação do DNA , Metilação de DNA , DNA Viral/genética , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Vírus da Hepatite B/metabolismo , Camundongos Transgênicos
10.
Am J Pathol ; 194(1): 165-178, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923249

RESUMO

Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare and relatively indolent B-cell lymphoma. Characteristically, the [lymphocyte-predominant (LP)] tumor cells are embedded in a microenvironment enriched in lymphocytes. More aggressive variants of mature B-cell and peripheral T-cell lymphomas exhibit nuclear expression of the polo-like kinase 1 (PLK1) protein, stabilizing MYC (alias c-myc) and associated with worse clinical outcomes. This study demonstrated expression of PLK1 in the LP cells in 100% of NLPHL cases (n = 76). In contrast, <5% of classic Hodgkin lymphoma cases (n = 70) showed PLK1 expression within the tumor cells. Loss-of-function approaches demonstrated that the expression of PLK1 promoted cell proliferation and increased MYC stability in NLPHL cell lines. Correlation with clinical parameters revealed that the increased expression of PLK1 was associated with advanced-stage disease in patients with NLPHL. A multiplex immunofluorescence panel coupled with artificial intelligence algorithms was used to correlate the composition of the tumor microenvironment with the proliferative stage of LP cells. The results showed that LP cells with PLK1 (high) expression were associated with increased numbers of cytotoxic and T-regulatory T cells. Overall, the findings demonstrate that PLK1 signaling increases NLPHL proliferation and constitutes a potential vulnerability that can be targeted with PLK1 inhibitors. An active immune surveillance program in NLPHL may be a critical mechanism limiting PLK1-dependent tumor growth.


Assuntos
Doença de Hodgkin , Linfoma de Células B , Humanos , Inteligência Artificial , Doença de Hodgkin/metabolismo , Doença de Hodgkin/patologia , Linfócitos/patologia , Linfoma de Células B/patologia , Quinase 1 Polo-Like , Microambiente Tumoral
11.
J Pathol ; 262(2): 212-225, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984408

RESUMO

Despite evidence of genetic signatures in normal tissue correlating with disease risk, prospectively identifying genetic drivers and cell types that underlie subsequent pathologies has historically been challenging. The human prostate is an ideal model to investigate this phenomenon because it is anatomically segregated into three glandular zones (central, peripheral, and transition) that develop differential pathologies: prostate cancer in the peripheral zone (PZ) and benign prostatic hyperplasia (BPH) in the transition zone (TZ), with the central zone (CZ) rarely developing disease. More specifically, prostatic basal cells have been implicated in differentiation and proliferation during prostate development and regeneration; however, the contribution of zonal variation and the critical role of basal cells in prostatic disease etiology are not well understood. Using single-cell RNA sequencing of primary prostate epithelial cultures, we elucidated organ-specific, zone-specific, and cluster-specific gene expression differences in basal cells isolated from human prostate and seminal vesicle (SV). Aggregated analysis identified ten distinct basal clusters by Uniform Manifold Approximation and Projection. Organ specificity compared gene expression in SV with the prostate. As expected, SV cells were distinct from prostate cells by clustering, gene expression, and pathway analysis. For prostate zone specificity, we identified two CZ-specific clusters, while the TZ and PZ populations clustered together. Despite these similarities, differential gene expression was identified between PZ and TZ samples that correlated with gene expression profiles in prostate cancer and BPH, respectively. Zone-specific profiles and cell type-specific markers were validated using immunostaining and bioinformatic analyses of publicly available RNA-seq datasets. Understanding the baseline differences at the organ, zonal, and cellular level provides important insight into the potential drivers of prostatic disease and guides the investigation of novel preventive or curative treatments. Importantly, this study identifies multiple prostate basal cell populations and cell type-specific gene signatures within prostate basal epithelial cells that have potential critical roles in driving prostatic diseases. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Transcriptoma , Hiperplasia Prostática/patologia , Neoplasias da Próstata/patologia , Células Epiteliais/patologia , Análise de Sequência de RNA
12.
Nat Immunol ; 13(3): 300-7, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22267219

RESUMO

The molecular crosstalk between the interleukin 7 receptor (IL-7R) and the precursor to the B cell antigen receptor (pre-BCR) in B lymphopoiesis has not been elucidated. Here we demonstrate that in pre-B cells, the IL-7R but not the pre-BCR was coupled to phosphatidylinositol-3-OH kinase (PI(3)K) and the kinase Akt; signaling by this pathway inhibited expression of recombination-activating gene 1 (Rag1) and Rag2. Attenuation of IL-7 signaling resulted in upregulation of the transcription factors Foxo1 and Pax5, which coactivated many pre-B cell genes, including Rag1, Rag2 and Blnk. Induction of Blnk (which encodes the signaling adaptor BLNK) enabled pre-BCR signaling via the signaling molecule Syk and promoted immunoglobulin light-chain rearrangement. BLNK expression also antagonized Akt activation, thereby augmenting the accumulation of Foxo1 and Pax5. This self-reinforcing molecular circuit seemed to sense limiting concentrations of IL-7 and functioned to constrain the proliferation of pre-B cells and trigger their differentiation.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular , Interleucina-7/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais , Animais , Linfócitos B/citologia , Células Cultivadas , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/imunologia , Camundongos , Fator de Transcrição PAX5/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo
13.
Mol Psychiatry ; 28(10): 4215-4224, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37537282

RESUMO

We previously discovered using transcriptomics that rats undergoing withdrawal after chronic ethanol exposure had increased expression of several genes encoding RNA splicing factors in the hippocampus. Here, we examined RNA splicing in the rat hippocampus during withdrawal from chronic ethanol exposure and in postmortem hippocampus of human subjects diagnosed with alcohol use disorder (AUD). We found that expression of the gene encoding the splicing factor, poly r(C) binding protein 1 (PCBP1), was elevated in the hippocampus of rats during withdrawal after chronic ethanol exposure and AUD subjects. We next analyzed the rat RNA-Seq data for differentially expressed (DE) exon junctions. One gene, Hapln2, had increased usage of a novel 3' splice site in exon 4 during withdrawal. This splice site was conserved in human HAPLN2 and was used more frequently in the hippocampus of AUD compared to control subjects. To establish a functional role for PCBP1 in HAPLN2 splicing, we performed RNA immunoprecipitation (RIP) with a PCBP1 antibody in rat and human hippocampus, which showed enriched PCBP1 association near the HAPLN2 exon 4 3' splice site in the hippocampus of rats during ethanol withdrawal and AUD subjects. Our results indicate a conserved role for the splicing factor PCBP1 in aberrant splicing of HAPLN2 after chronic ethanol exposure. As the HAPLN2 gene encodes an extracellular matrix protein involved in nerve conduction velocity, use of this alternative splice site is predicted to result in loss of protein function that could negatively impact hippocampal function in AUD.


Assuntos
Alcoolismo , Sítios de Splice de RNA , Humanos , Ratos , Animais , Splicing de RNA/genética , Etanol/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Alcoolismo/genética , Alcoolismo/metabolismo , Hipocampo/metabolismo , Processamento Alternativo/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
Prostaglandins Other Lipid Mediat ; 172: 106818, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38340978

RESUMO

Platelet-activating factor (PAF) plays a significant role in several leucocyte functions, including platelet aggregation and inflammation. Additionally, PAF has a role in the behavioral and physiological changes in mammals. However, the effect of PAF has not been well studied in birds. Therefore, the study aimed to determine if PAF affects feeding behavior, voluntary activity, cloacal temperature, and feed passage through the digestive tract in chicks (Gallus gallus). We also studied the involvement of PAF in the innate immune system induced by lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria. Both intraperitoneal (IP) and intracerebroventricular (ICV) injections of PAF significantly decreased food intake. IP injection of PAF significantly decreased voluntary activity and slowed the feed passage from the crop, whereas ICV injection had no effect. Conversely, ICV injection of PAF significantly increased the cloacal temperature, but IP injection had no effect. The IP injection of LPS significantly reduced the mRNA expression of lysophosphatidylcholine acyltransferase 2, an enzyme responsible for PAF production in the heart and pancreas. On the other hand, LPS significantly increased the mRNA expression of the PAF receptor in the peripheral organs. The present study shows that PAF influences behavioral and physiological responses and is related to the response against bacterial infections in chicks.


Assuntos
Temperatura Corporal , Galinhas , Cloaca , Papo das Aves , Ingestão de Alimentos , Fator de Ativação de Plaquetas , Animais , Masculino , Temperatura Corporal/efeitos dos fármacos , Cloaca/efeitos dos fármacos , Cloaca/fisiologia , Papo das Aves/efeitos dos fármacos , Papo das Aves/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Ativação de Plaquetas/farmacologia , Fator de Ativação de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
15.
J Immunol ; 209(10): 1999-2011, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36426946

RESUMO

Monocytes (Mos)/macrophages (Mϕs) orchestrate biological processes critical for efficient skin wound healing. However, current understanding of skin wound Mo/Mϕ heterogeneity is limited by traditional experimental approaches such as flow cytometry and immunohistochemistry. Therefore, we sought to more fully explore Mo/Mϕ heterogeneity and associated state transitions during the course of excisional skin wound healing in mice using single-cell RNA sequencing. The live CD45+CD11b+Ly6G- cells were isolated from skin wounds of C57BL/6 mice on days 3, 6, and 10 postinjury and captured using the 10x Genomics Chromium platform. A total of 2813 high-quality cells were embedded into a uniform manifold approximation and projection space, and eight clusters of distinctive cell populations were identified. Cluster dissimilarity and differentially expressed gene analysis categorized those clusters into three groups: early-stage/proinflammatory, late-stage/prohealing, and Ag-presenting phenotypes. Signature gene and Gene Ontology analysis of each cluster provided clues about the different functions of the Mo/Mϕ subsets, including inflammation, chemotaxis, biosynthesis, angiogenesis, proliferation, and cell death. Quantitative PCR assays validated characteristics of early- versus late-stage Mos/Mϕs inferred from our single-cell RNA sequencing dataset. Additionally, cell trajectory analysis by pseudotime and RNA velocity and adoptive transfer experiments indicated state transitions between early- and late-state Mos/Mϕs as healing progressed. Finally, we show that the chemokine Ccl7, which was a signature gene for early-stage Mos/Mϕs, preferentially induced the accumulation of proinflammatory Ly6C+F4/80lo/- Mos/Mϕs in mouse skin wounds. In summary, our data demonstrate the complexity of Mo/Mϕ phenotypes, their dynamic behavior, and diverse functions during normal skin wound healing.


Assuntos
Leucócitos , Monócitos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Cicatrização/genética , Macrófagos
16.
Artigo em Inglês | MEDLINE | ID: mdl-38147959

RESUMO

Zymosan is a fungi-derived pathogen-associated molecular pattern. It activates the immune system and induces the reduction of feed passage rate in the gastrointestinal tract of vertebrates including birds. However, the mechanism mediating the zymosan-induced inhibition of feed passage in the gastrointestinal tract remains unknown. Since the medulla oblongata regulates the digestive function, it is plausible that the medulla oblongata is involved in the zymosan-induced inhibition of feed passage. The present study was performed to identify the genes that were affected by zymosan within the medulla oblongata of chicks (Gallus gallus) using an RNA sequencing approach. We found that mRNAs of several bioactive molecules including neuropeptide Y (NPY) were increased with an intraperitoneal (IP) injection of zymosan. The increase of mRNA expression of NPY in the medulla oblongata was also observed after the IP injection of lipopolysaccharide, derived from gram-negative bacteria. These results suggest that medullary NPY is associated with physiological changes during fungal and bacterial infection. Furthermore, we found that intracerebroventricular injection of NPY and its receptor agonists reduced the feed passage from the crop. Additionally, the injection of NPY reduced the feed passage from the proventriculus to lower digestive tract. NPY also suppressed the activity of duodenal activities of amylase and trypsin. The present study suggests that fungi- and bacteria-induced activation of the immune system may activate the NPY neurons in the medulla oblongata and thereby reduce the digestive function in chicks.


Assuntos
Lipopolissacarídeos , Neuropeptídeo Y , Animais , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Lipopolissacarídeos/farmacologia , Zimosan/farmacologia , Galinhas/metabolismo , Bulbo/metabolismo , Trato Gastrointestinal/metabolismo
17.
Nat Immunol ; 12(12): 1212-20, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037603

RESUMO

During B lymphopoiesis, recombination of the locus encoding the immunoglobulin κ-chain complex (Igk) requires expression of the precursor to the B cell antigen receptor (pre-BCR) and escape from signaling via the interleukin 7 receptor (IL-7R). By activating the transcription factor STAT5, IL-7R signaling maintains proliferation and represses Igk germline transcription by unknown mechanisms. We demonstrate that a STAT5 tetramer bound the Igk intronic enhancer (E(κi)), which led to recruitment of the histone methyltransferase Ezh2. Ezh2 marked trimethylation of histone H3 at Lys27 (H3K27me3) throughout the κ-chain joining region (J(κ)) to the κ-chain constant region (C(κ)). In the absence of Ezh2, IL-7 failed to repress Igk germline transcription. H3K27me3 modifications were lost after termination of IL-7R-STAT5 signaling, and the transcription factor E2A bound E(κi), which resulted in acquisition of H3K4me1 and acetylated histone H4 (H4Ac). Genome-wide analyses showed a STAT5 tetrameric binding motif associated with transcriptional repression. Our data demonstrate how IL-7R signaling represses Igk germline transcription and provide a general model for STAT5-mediated epigenetic transcriptional repression.


Assuntos
Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Imunoglobulinas/genética , Fator de Transcrição STAT5/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Ligação Competitiva , Células COS , Chlorocebus aethiops , Análise por Conglomerados , Proteína Potenciadora do Homólogo 2 de Zeste , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Repressor Polycomb 2 , Ligação Proteica , Receptores de Interleucina-7/metabolismo , Transdução de Sinais
18.
Mol Psychiatry ; 27(11): 4624-4632, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36089615

RESUMO

Positive effects of alcohol drinking such as anxiolysis and euphoria appear to be a crucial factor in the initiation and maintenance of alcohol use disorder (AUD). However, the mechanisms that lead from chromatin reorganization to transcriptomic changes after acute ethanol exposure remain unknown. Here, we used Assay for Transposase-Accessible Chromatin followed by high throughput sequencing (ATAC-seq) and RNA-seq to investigate epigenomic and transcriptomic changes that underlie anxiolytic effects of acute ethanol using an animal model. Analysis of ATAC-seq data revealed an overall open or permissive chromatin state that was associated with transcriptomic changes in the amygdala after acute ethanol exposure. We identified a candidate gene, Hif3a (Hypoxia-inducible factor 3, alpha subunit), that had 'open' chromatin regions (ATAC-seq peaks), associated with significantly increased active epigenetic histone acetylation marks and decreased DNA methylation at these regions. The mRNA levels of Hif3a were increased by acute ethanol exposure, but decreased in the amygdala during withdrawal after chronic ethanol exposure. Knockdown of Hif3a expression in the central nucleus of amygdala attenuated acute ethanol-induced increases in Hif3a mRNA levels and blocked anxiolysis in rats. These data indicate that chromatin accessibility and transcriptomic signatures in the amygdala after acute ethanol exposure underlie anxiolysis and possibly prime the chromatin for the development of AUD.


Assuntos
Alcoolismo , Epigênese Genética , Animais , Ratos , Epigênese Genética/genética , Etanol/farmacologia , Cromatina , Perfilação da Expressão Gênica , Alcoolismo/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
19.
Amino Acids ; 55(2): 183-192, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436082

RESUMO

Brain amino acid metabolism has been reported to regulate body temperature, feeding behavior and stress response. Central injection of taurine induced hypothermic and anorexigenic effects in chicks. However, it is still unknown how the amino acid metabolism is influenced by the central injection of taurine. Therefore, the objective of this study was to investigate the changes in brain and plasma free amino acids following central injection of taurine. Five-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 µmol/10 µL). Central taurine increased tryptophan concentrations in the diencephalon, and decreased tyrosine in the diencephalon, brainstem, cerebellum, telencephalon and plasma at 30 min post-injection. Taurine was increased in all the brain parts after ICV taurine. Although histidine and cystathionine concentrations were increased in the diencephalon and brainstem, several amino acids such as isoleucine, arginine, methionine, phenylalanine, glutamic acid, asparagine, proline, and alanine were reduced following central injection of taurine. All amino acid concentrations were decreased in the plasma after ICV taurine. In conclusion, central taurine quickly changes free amino acid concentrations in the brain and plasma, which may have a role in thermoregulation, food intake and stress response in chicks.


Assuntos
Aminoácidos , Taurina , Masculino , Animais , Aminoácidos/metabolismo , Taurina/farmacologia , Encéfalo/metabolismo , Prolina/metabolismo , Arginina/metabolismo , Galinhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA