RESUMO
The study and manipulation of T cell receptors (TCRs) is central to multiple fields across basic and translational immunology research. Produced by V(D)J recombination, TCRs are often only recorded in the literature and data repositories as a combination of their V and J gene symbols, plus their hypervariable CDR3 amino acid sequence. However, numerous applications require full-length coding nucleotide sequences. Here we present Stitchr, a software tool developed to specifically address this limitation. Given minimal V/J/CDR3 information, Stitchr produces complete coding sequences representing a fully spliced TCR cDNA. Due to its modular design, Stitchr can be used for TCR engineering using either published germline or novel/modified variable and constant region sequences. Sequences produced by Stitchr were validated by synthesizing and transducing TCR sequences into Jurkat cells, recapitulating the expected antigen specificity of the parental TCR. Using a companion script, Thimble, we demonstrate that Stitchr can process a million TCRs in under ten minutes using a standard desktop personal computer. By systematizing the production and modification of TCR sequences, we propose that Stitchr will increase the speed, repeatability, and reproducibility of TCR research. Stitchr is available on GitHub.
Assuntos
Receptores de Antígenos de Linfócitos T , Software , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar , Humanos , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Reprodutibilidade dos TestesRESUMO
BACKGROUND AND AIMS: Activation of the antitumor immune response using programmed death receptor-1 (PD-1) blockade showed benefit only in a fraction of patients with hepatocellular carcinoma (HCC). Combining PD-1 blockade with antiangiogenesis has shown promise in substantially increasing the fraction of patients with HCC who respond to treatment, but the mechanism of this interaction is unknown. APPROACH AND RESULTS: We recapitulated these clinical outcomes using orthotopic-grafted or induced-murine models of HCC. Specific blockade of vascular endothelial receptor 2 (VEGFR-2) using a murine antibody significantly delayed primary tumor growth but failed to prolong survival, while anti-PD-1 antibody treatment alone conferred a minor survival advantage in one model. However, dual anti-PD-1/VEGFR-2 therapy significantly inhibited primary tumor growth and doubled survival in both models. Combination therapy reprogrammed the immune microenvironment by increasing cluster of differentiation 8-positive (CD8+ ) cytotoxic T cell infiltration and activation, shifting the M1/M2 ratio of tumor-associated macrophages and reducing T regulatory cell (Treg) and chemokine (C-C motif) receptor 2-positive monocyte infiltration in HCC tissue. In these models, VEGFR-2 was selectively expressed in tumor endothelial cells. Using spheroid cultures of HCC tissue, we found that PD-ligand 1 expression in HCC cells was induced in a paracrine manner upon anti-VEGFR-2 blockade in endothelial cells in part through interferon-gamma expression. Moreover, we found that VEGFR-2 blockade increased PD-1 expression in tumor-infiltrating CD4+ cells. We also found that under anti-PD-1 therapy, CD4+ cells promote normalized vessel formation in the face of antiangiogenic therapy with anti-VEGFR-2 antibody. CONCLUSIONS: We show that dual anti-PD-1/VEGFR-2 therapy has a durable vessel fortification effect in HCC and can overcome treatment resistance to either treatment alone and increase overall survival in both anti-PD-1 therapy-resistant and anti-PD-1 therapy-responsive HCC models.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos/uso terapêutico , Carcinoma Hepatocelular/irrigação sanguínea , Linhagem Celular Tumoral , Neoplasias Hepáticas/irrigação sanguínea , Linfócitos do Interstício Tumoral , Camundongos , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/imunologia , Esferoides Celulares , Linfócitos T Citotóxicos , Macrófagos Associados a Tumor , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologiaRESUMO
Protein phosphorylation generates a source of phosphopeptides that are presented by major histocompatibility complex class I molecules and recognized by T cells. As deregulated phosphorylation is a hallmark of malignant transformation, the differential display of phosphopeptides on cancer cells provides an immunological signature of 'transformed self'. Here we demonstrate that phosphorylation can considerably increase peptide binding affinity for HLA-A2. To understand this, we solved crystal structures of four phosphopeptide-HLA-A2 complexes. These identified a novel peptide-binding motif centered on a solvent-exposed phosphate anchor. Our findings indicate that deregulated phosphorylation can create neoantigens by promoting binding to major histocompatibility complex molecules or by affecting the antigenic identity of presented epitopes. These results highlight the potential of phosphopeptides as novel targets for cancer immunotherapy.
Assuntos
Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Autoantígenos/imunologia , Antígenos HLA-A/imunologia , Fosfopeptídeos/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Antígenos HLA-A/química , Antígeno HLA-A2 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Linfócitos T/imunologiaRESUMO
Although common variable immunodeficiency (CVID) has long been considered as a group of primary Ab deficiencies, growing experimental data now suggest a global disruption of the entire adaptive immune response in a segment of patients. Oligoclonality of the TCR repertoire was previously demonstrated; however, the manner in which it relates to other B cell and T cell findings reported in CVID remains unclear. Using a combination approach of high-throughput TCRß sequencing and multiparametric flow cytometry, we compared the TCR repertoire diversity between various subgroups of CVID patients according to their B cell immunophenotypes. Our data suggest that the reduction in repertoire diversity is predominantly restricted to those patients with severely reduced class-switched memory B cells and an elevated level of CD21(lo) B cells (Freiburg 1a), and may be driven by a reduced number of naive T cells unmasking underlying memory clonality. Moreover, our data indicate that this loss in repertoire diversity progresses with advancing age far exceeding the expected physiological rate. Radiological evidence supports the loss in thymic volume, correlating with the decrease in repertoire diversity. Evidence now suggests that primary thymic failure along with other well-described B cell abnormalities play an important role in the pathophysiology in Freiburg group 1a patients. Clinically, our findings emphasize the integration of combined B and T cell testing to identify those patients at the greatest risk for infection. Future work should focus on investigating the link between thymic failure and the severe reduction in class-switched memory B cells, while gathering longitudinal laboratory data to examine the progressive nature of the disease.
Assuntos
Imunodeficiência de Variável Comum/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Fatores Etários , Linfócitos B/imunologia , Imunodeficiência de Variável Comum/fisiopatologia , Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Switching de Imunoglobulina , Memória Imunológica , Imunofenotipagem , Depleção Linfocítica , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Complemento 3d/imunologia , Timo/patologiaRESUMO
Immune dysregulation is a prominent feature of primary immunodeficiency disorders, which commonly manifested as autoimmunity, cytopenias and inflammatory bowel disease. In partial T-cell immunodeficiency disorders, it has been proposed that the imbalance between effector and regulatory T-cells drives the breakdown of peripheral tolerance. While there is no robust test for immune dysregulation, the T-cell receptor repertoire is used as a surrogate marker, and has been shown to be perturbed in a number of immunodeficiency disorders featuring immune dysregulation including Omenn's Syndrome, Wiskott-Aldrich Syndrome, and common variable immunodeficiency. This review discusses how recent advances in TCR next-generation sequencing and bioinformatics have led to the in-depth characterization of CDR3 sequences and an exponential growth in examinable parameters. Specifically, we highlight the use of junctional diversity as a means to differentiate intrinsic T-cell defects from secondary causes of repertoire perturbation in primary immunodeficiency disorders. However, key questions, such as the identity of antigenic targets for large, expanded T-cell clonotypes, remain unanswered despite the fact that such clones are likely to play a pathogenic role in driving immune dysregulation and autoimmunity. Finally, we discuss a number of emerging technologies such as in silico reconstruction, high-throughput pairwise αß sequencing and single-cell RNAseq that offer the potential to define the antigenic epitope and function of a given T-cell, thereby enhancing our understanding in this field.
Assuntos
Síndromes de Imunodeficiência/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Autoantígenos/imunologia , Autoimunidade , Células Clonais , Biologia Computacional , Mapeamento de Epitopos , Sequenciamento de Nucleotídeos em Larga Escala , Homeostase , Humanos , Análise de Célula ÚnicaRESUMO
The importance of intratumour genetic and functional heterogeneity is increasingly recognised as a driver of cancer progression and survival outcome. Understanding how tumour clonal heterogeneity impacts upon therapeutic outcome, however, is still an area of unmet clinical and scientific need. TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy [Rx]), a prospective study of patients with primary non-small cell lung cancer (NSCLC), aims to define the evolutionary trajectories of lung cancer in both space and time through multiregion and longitudinal tumour sampling and genetic analysis. By following cancers from diagnosis to relapse, tracking the evolutionary trajectories of tumours in relation to therapeutic interventions, and determining the impact of clonal heterogeneity on clinical outcomes, TRACERx may help to identify novel therapeutic targets for NSCLC and may also serve as a model applicable to other cancer types.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Progressão da Doença , Neoplasias Pulmonares/genética , Antígenos de Neoplasias , Biomarcadores Tumorais/análise , Resistencia a Medicamentos Antineoplásicos , Humanos , Estudos Longitudinais , Metástase Neoplásica , Resultado do TratamentoRESUMO
BACKGROUND: Serum free light chains (FLC) are sensitive biomarkers used for the diagnosis and management of plasma cell dyscrasias, such as multiple myeloma (MM), and are central to clinical screening algorithms and therapy response criteria. We have developed a portable, near-patient, lateral-flow test (Seralite®) that quantitates serum FLC in 10 min, and is designed to eliminate sample processing delays and accelerate decision-making in the clinic. METHODS: Assay interference, imprecision, lot-to-lot variability, linearity, and the utility of a competitive-inhibition design for the elimination of antigen-excess ('hook effect') were assessed. Reference ranges were calculated from 91 healthy donor sera. Preliminary clinical validation was conducted by retrospective analysis of sera from 329 patients. Quantitative and diagnostic results were compared to Freelite®. RESULTS: Seralite® gave a broad competitive-inhibition calibration curve from below 2.5 mg/L to above 200 mg/L, provided good assay linearity (between 1.6 and 208.7 mg/L for κ FLC and between 3.5 and 249.7 mg/L for λ FLC) and sensitivity (1.4 mg/L for κ FLC and 1.7 mg/L for λ FLC), and eliminated anomalous results from antigen-excess. Seralite® gave good diagnostic concordance with Freelite® (Roche Hitachi Cobas C501) identifying an abnormal FLC ratio and FLC difference in 209 patients with newly diagnosed MM and differentiating these patients from normal healthy donors with polyclonal FLC. CONCLUSIONS: Seralite® sensitively quantitates FLC and rapidly identifies clinical conditions where FLC are abnormal, including MM.
Assuntos
Biomarcadores Tumorais/sangue , Imunoensaio/métodos , Cadeias kappa de Imunoglobulina/sangue , Cadeias lambda de Imunoglobulina/sangue , Mieloma Múltiplo/sangue , Humanos , Cadeias Leves de Imunoglobulina/sangue , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear. Salmonella can colonize systemic sites including the BM and spleen. This resolving infection has multiple IFN-γ-mediated acute and chronic effects on BM progenitors, and during the first week of infection IFN-γ is produced by myeloid, NK, NKT, CD4(+) T cells, and some lineage-negative cells. After infection, the phenotype of BM progenitors rapidly but reversibly alters, with a peak ⼠30-fold increase in Sca-1(hi) progenitors and a corresponding loss of Sca-1(lo/int) subsets. Most strikingly, the capacity of donor Sca-1(hi) cells to reconstitute an irradiated host is reduced; the longer donor mice are exposed to infection, and Sca-1(hi) c-kit(int) cells have an increased potential to generate B1a-like cells. Thus, Salmonella can have a prolonged influence on BM progenitor functionality not directly related to bacterial persistence. These results reflect changes observed in leucopoiesis during aging and suggest that BM functionality can be modulated by life-long, periodic exposure to infection. Better understanding of this process could offer novel therapeutic opportunities to modulate BM functionality and promote healthy aging.
Assuntos
Células da Medula Óssea/imunologia , Salmonelose Animal/imunologia , Células-Tronco/imunologia , Animais , Antígenos Ly/imunologia , Células da Medula Óssea/microbiologia , Células da Medula Óssea/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Homeostase/imunologia , Interferon gama/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Salmonella/imunologia , Salmonelose Animal/patologia , Células-Tronco/microbiologia , Células-Tronco/patologiaRESUMO
BACKGROUND: Deceased kidney donors are increasingly "marginal," and many have risk factors for acute kidney injury (AKI) that may impact on subsequent renal transplant outcome. Despite this, determining the presence of AKI at the time of deceased organ donation remains difficult. METHODS: Urine samples from 182 brainstem dead multi-organ donors (all of whom donated hearts that were transplanted) were analyzed for a Luminex(™) panel of biomarkers linked with AKI. This included KIM-1, NGAL, IFN-γ, TNF-α, cystatin C, Fractalkine and vascular endothelial growth factor. Levels were correlated to early renal transplant outcomes, most specifically delayed graft function. RESULTS: Donor urinary KIM-1 levels were significantly higher in donors whose kidneys displayed aberrant early function (p = 0.011). Fractalkine levels showed a trend toward elevation in such donors but uncorrected this did not attain significance. No correlation occurred with the remaining biomarkers. CONCLUSIONS: KIM-1 appears to show promise as a marker for AKI in deceased cardiac organ donors. The availability of a lateral flow device (Renastick(™) ) for KIM-1 that also demonstrates higher urinary KIM-1 levels in donors whose kidneys show aberrant initial function (p = 0.03), makes KIM-1 a potential indicator of AKI that may merit further evaluation for its application at the donor bedside.
Assuntos
Injúria Renal Aguda/urina , Biomarcadores/urina , Transplante de Rim , Glicoproteínas de Membrana/urina , Doadores de Tecidos , Adolescente , Adulto , Idoso , Cadáver , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Seguimentos , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores Virais , Adulto JovemRESUMO
Acute rejection is a significant problem for patients undergoing HLA-incompatible renal transplantation, affecting between 12 and 53% of patients. Any mechanism of detecting rejection in advance of current methods would offer significant benefit. This study aimed to evaluate whether serum biomarkers could predict rejection in HLAi transplants recipients. Sera from 94 HLAi transplant recipients from a single centre were analysed for a panel of biomarkers including: NGAL, KIM-1, IP-10, cystatin C, cathepsin L and VEGF. Biomarker levels pre-operatively, day 1 and at day 30 post-transplant were correlated with the development of early rejection. Significantly higher levels of IP-10 and NGAL were seen on day 1 following transplant in those patients who developed acute rejection (P < 0.001 and 0.005) and generated AUC of 0.73 and 0.67, respectively. No differences were seen for the other biomarkers or at the other time points. In this study cohort, IP-10 and NGAL have demonstrated good predictive ability for the development of acute rejection at a very early time point. They may have a role in identifying patients at higher risk for rejection and stratifying immunosuppression or surveillance.
Assuntos
Quimiocina CXCL10/sangue , Rejeição de Enxerto/sangue , Rejeição de Enxerto/etiologia , Transplante de Rim/efeitos adversos , Lipocalinas/sangue , Proteínas Proto-Oncogênicas/sangue , Doença Aguda , Proteínas de Fase Aguda , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Teste de Histocompatibilidade , Humanos , Lipocalina-2 , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Adulto JovemRESUMO
PURPOSE: CLDN18.2 is a surface membrane protein crucial for maintaining tight junctions in gastric mucosal cells and is highly expressed in gastric, esophageal, and pancreatic cancers. Thus, CLDN18.2 is suited for exploration as a clinical target for chimeric antigen receptor T-cell (CAR-T) therapy in these indications. Although CAR-T therapies show promise, a challenge faced in their development for solid tumors is the immunosuppressive tumor microenvironment, often characterized by the presence of immune and stromal cells secreting high levels of transforming growth factor beta (TGF-ß). Addition of TGF-ß armoring can potentially expand CAR-T activity in solid tumors. We report on the preclinical development of a CLDN18.2-targeting CAR-T showing effectiveness in CLDN18.2-positive gastric, esophageal, and pancreatic tumor models. EXPERIMENTAL DESIGN: The lead lentivirus product contains a unique single-chain variable fragment, CD28 and CD3z costimulatory and signaling domains, and dominant negative TGF-ß receptor armoring, enhancing targeting and safety and counteracting suppression. We developed a shortened cell manufacturing process to enhance the potency of the final product, AZD6422. RESULTS: AZD6422 exhibited significant antitumor activity and tolerability in multiple patient-derived tumor xenograft models with various CLDN18.2 and TGF-ß levels, as determined by immunohistochemistry. Efficacy of armored CAR-Ts in tumor models with elevated TGF-ß was increased in vitro and in vivo. In vitro restimulation assays established greater persistence and cytolytic function of AZD6422 compared with a traditionally manufactured CAR-T. CONCLUSIONS: AZD6422 was safe and efficacious in patient-derived, CLDN18.2-positive murine models of gastrointestinal cancers. Our data support further clinical development of AZD6422 for patients with these cancers.
RESUMO
Prostate cancer is generally considered an immunologically "cold" tumor type that is insensitive to immunotherapy. Targeting surface antigens on tumors through cellular therapy can induce a potent antitumor immune response to "heat up" the tumor microenvironment. However, many antigens expressed on prostate tumor cells are also found on normal tissues, potentially causing on-target, off-tumor toxicities and a suboptimal therapeutic index. Our studies revealed that six-transmembrane epithelial antigen of prostate-2 (STEAP2) was a prevalent prostate cancer antigen that displayed high, homogeneous cell surface expression across all stages of disease with limited distal normal tissue expression, making it ideal for therapeutic targeting. A multifaceted lead generation approach enabled development of an armored STEAP2 chimeric antigen receptor T cell (CAR-T) therapeutic candidate, AZD0754. This CAR-T product was armored with a dominant-negative TGF-ß type II receptor, bolstering its activity in the TGF-ß-rich immunosuppressive environment of prostate cancer. AZD0754 demonstrated potent and specific cytotoxicity against antigen-expressing cells in vitro despite TGF-ß-rich conditions. Further, AZD0754 enforced robust, dose-dependent in vivo efficacy in STEAP2-expressing cancer cell line-derived and patient-derived xenograft mouse models, and exhibited encouraging preclinical safety. Together, these data underscore the therapeutic tractability of STEAP2 in prostate cancer as well as build confidence in the specificity, potency, and tolerability of this potentially first-in-class CAR-T therapy.
Assuntos
Neoplasias da Próstata , Receptores de Antígenos Quiméricos , Masculino , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva , Neoplasias da Próstata/patologia , Linfócitos T , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Microambiente Tumoral , Oxirredutases/metabolismoRESUMO
T cell recognition of minor histocompatibility antigens (mHags) underlies allogeneic immune responses that mediate graft-versus-host disease and the graft-versus-leukemia effect following stem cell transplantation. Many mHags derive from single amino acid polymorphisms in MHC-restricted epitopes, but our understanding of the molecular mechanisms governing mHag immunogenicity and recognition is incomplete. Here we examined antigenic presentation and T-cell recognition of HA-1, a prototypic autosomal mHag derived from single nucleotide dimorphism (HA-1(H) versus HA-1(R)) in the HMHA1 gene. The HA-1(H) peptide is restricted by HLA-A2 and is immunogenic in HA-1(R/R) into HA-1(H) transplants, while HA-1(R) has been suggested to be a "null allele" in terms of T cell reactivity. We found that proteasomal cleavage and TAP transport of the 2 peptides is similar and that both variants can bind to MHC. However, the His>Arg change substantially decreases the stability and affinity of HLA-A2 association, consistent with the reduced immunogenicity of the HA-1(R) variant. To understand these findings, we determined the structure of an HLA-A2-HA-1(H) complex to 1.3A resolution. Whereas His-3 is accommodated comfortably in the D pocket, incorporation of the lengthy Arg-3 is predicted to require local conformational changes. Moreover, a soluble TCR generated from HA-1(H)-specific T-cells bound HA-1(H) peptide with moderate affinity but failed to bind HA-1(R), indicating complete discrimination of HA-1 variants at the level of TCR/MHC interaction. Our results define the molecular mechanisms governing immunogenicity of HA-1, and highlight how single amino acid polymorphisms in mHags can critically affect both MHC association and TCR recognition.
Assuntos
Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/genética , Polimorfismo Genético , Receptores de Antígenos de Linfócitos T/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arginina/metabolismo , Separação Celular , Dicroísmo Circular , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Antígeno HLA-A2/química , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Receptores de Antígenos de Linfócitos T/química , Ressonância de Plasmônio de Superfície , Linfócitos T Citotóxicos/imunologia , Doadores de TecidosRESUMO
Antibody-peptide epitope conjugates (APEC) are a new class of modified antibody-drug conjugates that redirect T-cell viral immunity against tumor cells. APECs contain a tumor-specific protease cleavage site linked to a patient-specific viral epitope, resulting in presentation of viral epitopes on cancer cells and subsequent recruitment and killing by CD8+ T cells. Here we developed an experimental pipeline to create patient-specific APECs and identified new preclinical therapies for ovarian carcinoma. Using functional assessment of viral peptide antigen responses to common viruses like cytomegalovirus (CMV) in patients with ovarian cancer, a library of 192 APECs with distinct protease cleavage sequences was created using the anti-epithelial cell adhesion molecule (EpCAM) antibody. Each APEC was tested for in vitro cancer cell killing, and top candidates were screened for killing xenograft tumors grown in zebrafish and mice. These preclinical modeling studies identified EpCAM-MMP7-CMV APEC (EpCAM-MC) as a potential new immunotherapy for ovarian carcinoma. Importantly, EpCAM-MC also demonstrated robust T-cell responses in primary ovarian carcinoma patient ascites samples. This work highlights a robust, customizable platform to rapidly develop patient-specific APECs. SIGNIFICANCE: This study develops a high-throughput preclinical platform to identify patient-specific antibody-peptide epitope conjugates that target cancer cells and demonstrates the potential of this immunotherapy approach for treating ovarian carcinoma.
Assuntos
Infecções por Citomegalovirus , Imunoconjugados , Neoplasias Ovarianas , Animais , Anticorpos , Linfócitos T CD8-Positivos , Carcinoma Epitelial do Ovário/tratamento farmacológico , Citomegalovirus , Molécula de Adesão da Célula Epitelial , Epitopos , Feminino , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Peptídeo Hidrolases , Peptídeos , Peixe-ZebraRESUMO
Stem cell transplantation is used widely in the management of a range of diseases of the hemopoietic system. Patients are immunosuppressed profoundly in the early posttransplant period, and reactivation of cytomegalovirus (CMV) remains a significant cause of morbidity and mortality. Adoptive transfer of donor-derived CMV-specific CD8+ T cell clones has been shown to reduce the rate of viral reactivation; however, the complexity of this approach severely limits its clinical application. We have purified CMV-specific CD8+ T cells from the blood of stem cell transplant donors using staining with HLA-peptide tetramers followed by selection with magnetic beads. CMV-specific CD8+ cells were infused directly into nine patients within 4 h of selection. Median cell dosage was 8.6 x 10(3)/kg with a purity of 98% of all T cells. CMV-specific CD8+ T cells became detectable in all patients within 10 d of infusion, and TCR clonotype analysis showed persistence of infused cells in two patients studied. CMV viremia was reduced in every case and eight patients cleared the infection, including one patient who had a prolonged history of CMV infection that was refractory to antiviral therapy. This novel approach to adoptive transfer has considerable potential for antigen-specific T cell therapy.
Assuntos
Transferência Adotiva , Linfócitos T CD8-Positivos/transplante , Infecções por Citomegalovirus/terapia , Citomegalovirus/imunologia , Transplante de Células-Tronco , Transferência Adotiva/métodos , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Feminino , Antígenos HLA/imunologia , Doenças Hematológicas/terapia , Doenças Hematológicas/virologia , Humanos , Masculino , Peptídeos/imunologiaRESUMO
There is a pressing need for novel immunotherapeutic targets in colorectal cancer (CRC). Cytotoxic T cell infiltration is well established as a key prognostic indicator in CRC, and it is known that these tumor infiltrating lymphocytes (TILs) target and kill tumor cells. However, the specific antigens that drive these CD8+ T cell responses have not been well characterized. Recently, phosphopeptides have emerged as strong candidates for tumor-specific antigens, as dysregulated signaling in cancer leads to increased and aberrant protein phosphorylation. Here, we identify 120 HLA-I phosphopeptides from primary CRC tumors, CRC liver metastases and CRC cell lines using mass spectrometry and assess the tumor-resident immunity against these posttranslationally modified tumor antigens. Several CRC tumor-specific phosphopeptides were presented by multiple patients' tumors in our cohort (21% to 40%), and many have previously been identified on other malignancies (58% of HLA-A*02 CRC phosphopeptides). These shared antigens derived from mitogenic signaling pathways, including p53, Wnt and MAPK, and are therefore markers of malignancy. The identification of public tumor antigens will allow for the development of broadly applicable targeted therapeutics. Through analysis of TIL cytokine responses to these phosphopeptides, we have established that they are already playing a key role in tumor-resident immunity. Multifunctional CD8+ TILs from primary and metastatic tumors recognized the HLA-I phosphopeptides presented by their originating tumor. Furthermore, TILs taken from other CRC patients' tumors targeted two of these phosphopeptides. In another cohort of CRC patients, the same HLA-I phosphopeptides induced higher peripheral T cell responses than they did in healthy donors, suggesting that these immune responses are specifically activated in CRC patients. Collectively, these results establish HLA-I phosphopeptides as targets of the tumor-resident immunity in CRC, and highlight their potential as candidates for future immunotherapeutic strategies.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Fosfopeptídeos/imunologia , Linhagem Celular Tumoral , Humanos , Linfócitos T Citotóxicos/imunologiaRESUMO
Resistance to antibody-drug conjugates (ADCs) has been observed in both preclinical models and clinical studies. However, mechanisms of resistance to pyrrolobenzodiazepine (PBD)-conjugated ADCs have not been well characterized and thus, this study was designed to investigate development of resistance to PBD dimer warheads and PBD-conjugated ADCs. We established a PBD-resistant cell line, 361-PBDr, by treating human breast cancer MDA-MB-361 cells with gradually increasing concentrations of SG3199, the PBD dimer released from the PBD drug-linker tesirine. 361-PBDr cells were over 20-fold less sensitive to SG3199 compared with parental cells and were cross-resistant to other PBD warhead and ADCs conjugated with PBDs. Proteomic profiling revealed that downregulation of Schlafen family member 11 (SLFN11), a putative DNA/RNA helicase, sensitizing cancer cells to DNA-damaging agents, was associated with PBD resistance. Confirmatory studies demonstrated that siRNA knockdown of SLFN11 in multiple tumor cell lines conferred reduced sensitivity to SG3199 and PBD-conjugated ADCs. Treatment with EPZ011989, an EZH2 inhibitor, derepressed SLFN11 expression in 361-PBDr and other SLFN11-deficient tumor cells, and increased sensitivity to PBD and PBD-conjugated ADCs, indicating that the suppression of SLFN11 expression is associated with histone methylation as reported. Moreover, we demonstrated that combining an ataxia telangiectasia and Rad3-related protein (ATR) inhibitor, AZD6738, with SG3199 or PBD-based ADCs led to synergistic cytotoxicity in either resistant 361-PBDr cells or cells that SLFN11 was knocked down via siRNA. Collectively, these data provide insights into potential development of resistance to PBDs and PBD-conjugated ADCs, and more importantly, inform strategy development to overcome such resistance.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Benzodiazepinas/metabolismo , Proteínas Nucleares/metabolismo , Pirróis/metabolismo , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , TransfecçãoRESUMO
T cell immunotherapies have revolutionized treatment for a subset of cancers. Yet, a major hurdle has been the lack of facile and predicative preclinical animal models that permit dynamic visualization of T cell immune responses at single-cell resolution in vivo. Here, optically clear immunocompromised zebrafish were engrafted with fluorescent-labeled human cancers along with chimeric antigen receptor T (CAR T) cells, bispecific T cell engagers (BiTEs), and antibody peptide epitope conjugates (APECs), allowing real-time single-cell visualization of T cell-based immunotherapies in vivo. This work uncovered important differences in the kinetics of T cell infiltration, tumor cell engagement, and killing between these immunotherapies and established early endpoint analysis to predict therapy responses. We also established EGFR-targeted immunotherapies as a powerful approach to kill rhabdomyosarcoma muscle cancers, providing strong preclinical rationale for assessing a wider array of T cell immunotherapies in this disease.
Assuntos
Imunoterapia/métodos , Rabdomiossarcoma/terapia , Análise de Célula Única/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Peixe-Zebra/genética , Adolescente , Adulto , Animais , Animais Geneticamente Modificados , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Receptores ErbB/imunologia , Feminino , Humanos , Imunoterapia Adotiva , Subunidade gama Comum de Receptores de Interleucina/genética , Masculino , Camundongos Endogâmicos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Rabdomiossarcoma/patologia , Linfócitos T/imunologia , Temozolomida/farmacologia , Células Tumorais Cultivadas , Proteínas de Peixe-Zebra/genéticaRESUMO
PURPOSE: To evaluate the mechanisms of how therapeutic upregulation of the transcription factor, CCAAT/enhancer-binding protein alpha (C/EBPα), prevents tumor progression in patients with advanced hepatocellular carcinoma (HCC) and in different mouse tumor models. EXPERIMENTAL DESIGN: We conducted a phase I trial in 36 patients with HCC (NCT02716012) who received sorafenib as part of their standard care, and were given therapeutic C/EBPα small activating RNA (saRNA; MTL-CEBPA) as either neoadjuvant or adjuvant treatment. In the preclinical setting, the effects of MTL-CEBPA were assessed in several mouse models, including BNL-1ME liver cancer, Lewis lung carcinoma (LLC), and colon adenocarcinoma (MC38). RESULTS: MTL-CEBPA treatment caused radiologic regression of tumors in 26.7% of HCC patients with an underlying viral etiology with 3 complete responders. MTL-CEBPA treatment in those patients caused a marked decrease in peripheral blood monocytic myeloid-derived suppressor cell (M-MDSC) numbers and an overall reduction in the numbers of protumoral M2 tumor-associated macrophages (TAM). Gene and protein analysis of patient leukocytes following treatment showed CEBPA activation affected regulation of factors involved in immune-suppressive activity. To corroborate this observation, treatment of all the mouse tumor models with MTL-CEBPA led to a reversal in the suppressive activity of M-MDSCs and TAMs, but not polymorphonuclear MDSCs (PMN-MDSC). The antitumor effects of MTL-CEBPA in these tumor models showed dependency on T cells. This was accentuated when MTL-CEBPA was combined with checkpoint inhibitors or with PMN-MDSC-targeted immunotherapy. CONCLUSIONS: This report demonstrates that therapeutic upregulation of the transcription factor C/EBPα causes inactivation of immune-suppressive myeloid cells with potent antitumor responses across different tumor models and in cancer patients. MTL-CEBPA is currently being investigated in combination with pembrolizumab in a phase I/Ib multicenter clinical study (NCT04105335).