RESUMO
Bacteria-Ig interactions maintain homeostasis in the gut through the clearance of pathogenic bacteria and the development of immune tolerance to inflammatory bacteria; whether similar interactions modulate inflammation and bacterial colonization in the female genital tract is uncertain. In this study, we used a flow cytometry-based assay to quantify microbe-binding IgA and IgG in the cervicovaginal secretions of 200 HIV-uninfected women from Nairobi, Kenya that were enriched for bacterial vaginosis. Total IgA and IgG were abundant and frequently demonstrated ex vivo binding to the key vaginal bacteria species Gardnerella vaginalis, Prevotella bivia, Lactobacillus iners, and Lactobacillus crispatus, which are largely microbe-specific. Microbe-binding Abs were generally not associated with the presence or abundance of their corresponding bacteria. Total and microbe-binding IgA and IgG were inversely correlated with total bacterial abundance and positively correlated with several proinflammatory cytokines (IL-6, TNF) and chemotactic chemokines (IP-10, MIG, MIP-1α, MIP-1ß, MIP-3α, MCP-1, IL-8), independent of total bacterial abundance. Flow cytometry-based quantification of microbe-binding Abs provides a platform to investigate host-microbiota interactions in the female genital tract of human observational and interventional studies. In contrast to the gut, cervicovaginal microbe-binding IgA and IgG do not appear to be immunoregulatory but may indirectly mitigate bacteria-induced inflammation by reducing total bacterial abundance.
RESUMO
BACKGROUND: Gut microbiome modulation to boost antitumor immune responses is under investigation. METHODS: ROMA-2 evaluated the microbial ecosystem therapeutic (MET)-4 oral consortia, a mixture of cultured human stool-derived immune-responsiveness associated bacteria, given with chemoradiation (CRT) in HPV-related oropharyngeal cancer patients. Co-primary endpoints were safety and changes in stool cumulative MET-4 taxa relative abundance (RA) by 16SRNA sequencing. Stools and plasma were collected pre/post-MET-4 intervention for microbiome and metabolome analysis. RESULTS: Twenty-nine patients received ≥1 dose of MET-4 and were evaluable for safety: drug-related adverse events (AEs) occurred in 13/29 patients: all grade 1-2 except one grade 3 (diarrhea). MET-4 was discontinued early in 7/29 patients due to CRT-induced toxicity, and in 1/29 due to MET-4 AEs. Twenty patients were evaluable for ecological endpoints: there was no increase in stool MET-4 RA post-intervention but trended to increase in stage III patients (p = 0.06). MET-4 RA was higher in stage III vs I-II patients at week 4 (p = 0.03) and 2-month follow-up (p = 0.01), which correlated with changes in plasma and stool targeted metabolomics. CONCLUSIONS: ROMA-2 did not meet its primary ecologic endpoint, as no engraftment was observed in the overall cohort. Exploratory findings of engraftment in stage III patients warrants further investigation of microbiome interventions in this subgroup.
Assuntos
Quimiorradioterapia , Microbioma Gastrointestinal , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Neoplasias Orofaríngeas/terapia , Neoplasias Orofaríngeas/microbiologia , Neoplasias Orofaríngeas/virologia , Masculino , Feminino , Pessoa de Meia-Idade , Quimiorradioterapia/métodos , Idoso , Infecções por Papillomavirus/complicações , Estudos Prospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Adulto , Fezes/microbiologiaRESUMO
BACKGROUND: Bloodstream infections (BSIs) are the most common infectious complication in patients who receive allogeneic hematopoietic stem-cell transplants (allo-HSCTs). Polymorphonuclear neutrophils (PMNs) are quantified to monitor the susceptibility to BSIs; however, their degree of activation is not. We previously identified a population of primed PMNs (pPMNs) with distinct markers of activation representing approximately 10% of PMNs in circulation. In this study, we investigate whether susceptibility to BSIs is related to the proportion of pPMNs rather than strictly PMN counts. METHODS: In this prospective observational study, we used flow cytometry to assess pPMNs in blood and oral rinse samples collected from patients receiving an allo-HSCT over the course of their treatment. We used the proportion of pPMNs in the blood on day 5 post-transplant to categorize patients into a high- or a low-pPMN group (>10% or <10% pPMNs). These groups were then used as a predictor of BSIs. RESULTS: A total of 76 patients were enrolled in the study with 36 in the high-pPMN group and 40 in the low-pPMN group. Patients in the low-pPMN group had lower expression of PMN activation and recruitment markers and displayed a delay in PMN repopulation of the oral cavity after the transplant. These patients were more susceptible to BSIs compared with patients in the high-pPMN group with an odds ratio of 6.5 (95% confidence interval, 2.110-25.07; P = .002). CONCLUSIONS: In patients who receive an allo-HSCT, having <10% pPMNs early in the post-transplant phase can be an independent predictor of BSI in allo-HSCT patients.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Sepse , Humanos , Neutrófilos , Estudos Prospectivos , Estudos Retrospectivos , Sepse/epidemiologia , Sepse/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversosRESUMO
Although antiretroviral treatment (ART) suppresses HIV RNA in blood and prevents transmission, low-level anorectal HIV RNA shedding persists in some ART-treated men who have sex with men. We collected anorectal biopsies and swabs from 55 men who have sex with men on effective ART, hypothesizing that anorectal shedding would be linked to microbiota-driven mucosal T cell activation. Lymphocytes were assessed by flow cytometry, soluble immune factors by multiplex immunoassay, neutrophils and epithelial integrity by immunofluorescence microscopy, and the anorectal microbiome by quantitative PCR and 16S rRNA gene sequencing. Unexpectedly, we found no evidence that anorectal HIV shedding was associated with the parameters of mucosal inflammation, including T cell activation, inflammatory cytokines, the density of neutrophils, or epithelial integrity. Moreover, the anorectal bacterial load was actually lower in the shedding group, with no major differences in bacterial composition. Instead, the strongest mucosal immune correlates of HIV shedding were an increase in central memory cell frequency and Ki67 expression as well as higher concentrations of the cytokine IL-7 in anorectal secretions. Anorectal HIV RNA shedding during effective ART was not driven by local inflammation; the associations seen with local homeostatic T cell proliferation will require further confirmation.
Assuntos
Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Inflamação/virologia , Eliminação de Partículas Virais/efeitos dos fármacos , Infecções por HIV/virologia , Homossexualidade Masculina , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Microbiota/efeitos dos fármacos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , RNA Viral/genética , Minorias Sexuais e de Gênero , Carga Viral/efeitos dos fármacos , Eliminação de Partículas Virais/genéticaRESUMO
Rationale: It remains unclear how gastroesophageal reflux disease (GERD) affects allograft microbial community composition in lung transplant recipients and its impact on lung allograft inflammation and function. Objectives: Our objective was to compare the allograft microbiota in lung transplant recipients with or without clinically diagnosed GERD in the first year after transplant and assess associations between GERD, allograft microbiota, inflammation, and acute and chronic lung allograft dysfunction (ALAD and CLAD). Methods: A total of 268 BAL samples were collected from 75 lung transplant recipients at a single transplant center every 3 months after transplant for 1 year. Ten transplant recipients from a separate transplant center provided samples before and after antireflux Nissen fundoplication surgery. Microbial community composition and density were measured using 16S ribosomal RNA gene sequencing and quantitative polymerase chain reaction, respectively, and inflammatory markers and bile acids were quantified. Measurements and Main Results: We observed a range of allograft community composition with three discernible types (labeled community state types [CSTs] 1-3). Transplant recipients with GERD were more likely to have CST1, characterized by high bacterial density and relative abundance of the oropharyngeal colonizing genera Prevotella and Veillonella. GERD was associated with more frequent transitions to CST1. CST1 was associated with lower inflammatory cytokine concentrations than pathogen-dominated CST3 across the range of microbial densities observed. Cox proportional hazard models revealed associations between CST3 and the development of ALAD/CLAD. Nissen fundoplication decreased bacterial load and proinflammatory cytokines. Conclusions: GERD was associated with a high bacterial density, Prevotella- and Veillonella-dominated CST1. CST3, but not CST1 or GERD, was associated with inflammation and early development of ALAD and CLAD. Nissen fundoplication was associated with a reduction in microbial density in BAL fluid samples, especially the CST1-specific genus, Prevotella.
Assuntos
Refluxo Gastroesofágico , Transplante de Pulmão , Microbiota , Humanos , Estudos Retrospectivos , Refluxo Gastroesofágico/complicações , Pulmão , Inflamação , AloenxertosRESUMO
BACKGROUND: Oral and gut microbiomes have emerged as potential biomarkers in cancer. We characterised the oral and gut microbiomes in a prospective observational cohort of HPV+ oropharyngeal squamous cell carcinoma (OPSCC) patients and evaluated the impact of chemoradiotherapy (CRT). METHODS: Saliva, oropharyngeal swabs over the tumour site and stool were collected at baseline and post-CRT. 16S RNA and shotgun metagenomic sequencing were used to generate taxonomic profiles, including relative abundance (RA), bacterial density, α-diversity and ß-diversity. RESULTS: A total of 132 samples from 22 patients were analysed. Baseline saliva and swabs had similar taxonomic composition (R2 = 0.006; p = 0.827). Oropharyngeal swabs and stool taxonomic composition varied significantly by stage, with increased oral RA of Fusobacterium nucleatum observed in stage III disease (p < 0.05). CRT significantly reduced the species richness and increased the RA of gut-associated taxa in oropharyngeal swabs (p < 0.05), while it had no effect in stool samples. These findings remained significant when adjusted by stage, smoking status and antibiotic use. CONCLUSIONS: Baseline oral and gut microbiomes differ by stage in this HPV+ cohort. CRT caused a shift towards a gut-like microbiome composition in oropharyngeal swabs. Stage-specific features and the transitions in oral microbiome might have prognostic and therapeutic implications.
Assuntos
Quimiorradioterapia/efeitos adversos , Microbioma Gastrointestinal , Mucosa Bucal/microbiologia , Neoplasias Orofaríngeas/terapia , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/complicações , Saliva/microbiologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/virologia , Feminino , Seguimentos , Humanos , Masculino , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/efeitos da radiação , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/virologia , Infecções por Papillomavirus/virologia , Prognóstico , Estudos Prospectivos , Saliva/efeitos dos fármacos , Saliva/efeitos da radiaçãoRESUMO
BACKGROUND: Discontinuation of inappropriate antimicrobial therapy is an important target for stewardship intervention. The drug and duration-dependent effects of antibiotics on the developing neonatal gut microbiota needs to be precisely quantified. METHODS: In this retrospective, cross-sectional study, we performed 16S rRNA sequencing on stool swab samples collected from neonatal intensive care unit patients within 7 days of discontinuation of therapy who received ampicillin and tobramycin (AT), ampicillin and cefotaxime (AC), or ampicillin, tobramycin, and metronidazole (ATM). We compared taxonomic composition within term and preterm infant groups between treatment regimens. We calculated adjusted effect estimates for antibiotic type and duration of therapy on the richness of obligate anaerobes and known butyrate-producers in all infants. RESULTS: A total of 72 infants were included in the study. Term infants received AT (20/28; 71%) or AC (8/28; 29%) with median durations of 3 and 3.5 days, respectively. Preterm infants received AT (32/44; 73%) or ATM (12/44; 27%) with median durations of 4 and 7 days, respectively. Compositional analyses of 67 stool swab samples demonstrated low diversity and dominance by potential pathogens. Within 1 week of discontinuation of therapy, each additional day of antibiotics was associated with lower richness of obligate anaerobes (adjusted risk ratio [aRR], 0.84; 95% confidence interval [CI], .73-.95) and butyrate-producers (aRR, 0.82; 95% CI, .67-.97). CONCLUSIONS: Each additional day of antibiotics was associated with lower richness of anaerobes and butyrate-producers within 1 week after therapy. A longitudinally sampled cohort with preexposure sampling is needed to validate our results.
Assuntos
Microbioma Gastrointestinal , Antibacterianos/uso terapêutico , Estudos Transversais , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal , RNA Ribossômico 16S , Estudos RetrospectivosRESUMO
The rising rates of antibiotic resistance increasingly compromise empirical treatment. Knowing the antibiotic susceptibility of a pathogen's close genetic relative(s) may improve empirical antibiotic selection. Using genomic and phenotypic data for Escherichia coli isolates from three separate clinically derived databases, we evaluated multiple genomic methods and statistical models for predicting antibiotic susceptibility, focusing on potentially rapidly available information, such as lineage or genetic distance from archived isolates. We applied these methods to derive and validate the prediction of antibiotic susceptibility to common antibiotics. We evaluated 968 separate episodes of suspected and confirmed infection with Escherichia coli from three geographically and temporally separated databases in Ontario, Canada, from 2010 to 2018. Across all approaches, model performance (area under the curve [AUC]) ranges for predicting antibiotic susceptibility were the greatest for ciprofloxacin (AUC, 0.76 to 0.97) and the lowest for trimethoprim-sulfamethoxazole (AUC, 0.51 to 0.80). When a model predicted that an isolate was susceptible, the resulting (posttest) probabilities of susceptibility were sufficient to warrant empirical therapy for most antibiotics (mean, 92%). An approach combining multiple models could permit the use of narrower-spectrum oral agents in 2 out of every 3 patients while maintaining high treatment adequacy (â¼90%). Methods based on genetic relatedness to archived samples of E. coli could be used to predict antibiotic resistance and improve antibiotic selection.
Assuntos
Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Área Sob a Curva , Bases de Dados Genéticas , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Genoma Bacteriano/genética , Genômica , Humanos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Ontário , Valor Preditivo dos Testes , Estudos Retrospectivos , Combinação Trimetoprima e Sulfametoxazol/farmacologiaRESUMO
Cystic fibrosis (CF) lung infections caused by members of the Burkholderia cepacia complex, such as Burkholderia multivorans, are associated with high rates of mortality and morbidity. We performed a population genomics study of 111 B. multivorans sputum isolates from one CF patient through three stages of infection including an early incident isolate, deep sampling of a one-year period of chronic infection occurring weeks before a lung transplant, and deep sampling of a post-transplant infection. We reconstructed the evolutionary history of the population and used a lineage-controlled genome-wide association study (GWAS) approach to identify genetic variants associated with antibiotic resistance. We found the incident isolate was basally related to the rest of the strains and more susceptible to antibiotics from three classes (ß-lactams, aminoglycosides, quinolones). The chronic infection isolates diversified into multiple, distinct genetic lineages and showed reduced antimicrobial susceptibility to the same antibiotics. The post-transplant reinfection isolates derived from the same source as the incident isolate and were genetically distinct from the chronic isolates. They also had a level of susceptibility in between that of the incident and chronic isolates. We identified numerous examples of potential parallel pathoadaptation, in which multiple mutations were found in the same locus or even codon. The set of parallel pathoadaptive loci was enriched for functions associated with virulence and resistance. Our GWAS analysis identified statistical associations between a polymorphism in the ampD locus with resistance to ß-lactams, and polymorphisms in an araC transcriptional regulator and an outer membrane porin with resistance to both aminoglycosides and quinolones. Additionally, these three loci were independently mutated four, three and two times, respectively, providing further support for parallel pathoadaptation. Finally, we identified a minimum of 14 recombination events, and observed that loci carrying putative parallel pathoadaptations and polymorphisms statistically associated with ß-lactam resistance were over-represented in these recombinogenic regions.
Assuntos
Infecções por Burkholderia/genética , Complexo Burkholderia cepacia/genética , Farmacorresistência Bacteriana/genética , Evolução Molecular , Genes Bacterianos/genética , Variação Genética/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Humanos , Recombinação GenéticaRESUMO
Rapid diagnostic tests for antibiotic resistance that identify the presence or absence of antibiotic resistance genes/loci are increasingly being developed. However, these approaches usually neglect other sources of predictive information which could be identified over shorter time periods, including patient epidemiologic risk factors for antibiotic resistance and markers of lineage. Using a data set of 414 Escherichia coli isolates recovered from separate episodes of bacteremia at a single academic institution in Toronto, Ontario, Canada, between 2010 and 2015, we compared the potential predictive ability of three approaches (epidemiologic risk factor-, pathogen sequence type [ST]-, and resistance gene identification-based approaches) for classifying phenotypic resistance to three antibiotics representing classes of broad-spectrum antimicrobial therapy (ceftriaxone [a 3rd-generation cephalosporin], ciprofloxacin [a fluoroquinolone], and gentamicin [an aminoglycoside]). We used logistic regression models to generate model receiver operating characteristic (ROC) curves. Predictive discrimination was measured using apparent and corrected (bootstrapped) areas under the curves (AUCs). Epidemiologic risk factor-based models based on two simple risk factors (prior antibiotic exposure and recent prior susceptibility of Gram-negative bacteria) provided a modest predictive discrimination, with AUCs ranging from 0.65 to 0.74. Sequence type-based models demonstrated strong discrimination (AUCs, 0.83 to 0.94) across all three antibiotic classes. The addition of epidemiologic risk factors to sequence type significantly improved the ability to predict resistance for all antibiotics (P < 0.05). Resistance gene identification-based approaches provided the highest degree of discrimination (AUCs, 0.88 to 0.99), with no statistically significant benefit being achieved by adding the patient epidemiologic predictors. In summary, sequence type or other lineage-based approaches could produce an excellent discrimination of antibiotic resistance and may be improved by incorporating readily available patient epidemiologic predictors but are less discriminatory than identification of the presence of known resistance loci.
Assuntos
Bacteriemia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Escherichia coli/genética , Loci Gênicos , Antibacterianos/farmacologia , Área Sob a Curva , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/diagnóstico , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Ontário/epidemiologia , Filogenia , Vigilância em Saúde Pública , Curva ROC , Fatores de RiscoRESUMO
BACKGROUND/OBJECTIVES: Low-grade chronic inflammation in visceral adipose tissue and the intestines are important drivers of obesity associated insulin resistance. Bioactive compounds derived from plants are an important source of potential novel therapies for the treatment of chronic diseases. In search for new immune based treatments of obesity associated insulin resistance, we screened for tissue relevant anti-inflammatory properties in 20 plant-based extracts. METHODS: We screened 20 plant-based extracts to assess for preferential production of IL-10 compared to TNFα, specifically targetting metabolic tissues, including the visceral adipose tissue. We assessed the therapeutic potential of the strongest anti-inflammatory compound, indigo, in the C57BL/6J diet-induced obesity mouse model with supplementation for up to 16 weeks by measuring changes in body weight, glucose and insulin tolerance, and gut barrier function. We also utilized flow cytometry, quantitative PCR, enzyme-linked immunosorbent assay (ELISA), and histology to measure changes to immune cells populations and cytokine profiles in the intestine, visceral adipose tissue (VAT), and liver. 16SrRNA sequencing was performed to examine gut microbial differences induced by indigo supplementation. RESULTS: We identifed indigo, an aryl hydrocarbon receptor (AhR) ligand agonist, as a potent inducer of IL-10 and IL-22, which protects against high-fat diet (HFD)-induced insulin resistance and fatty liver disease in the diet-induced obesity model. Therapeutic actions were mechanistically linked to decreased inflammatory immune cell tone in the intestine, VAT and liver. Specifically, indigo increased Lactobacillus bacteria and elicited IL-22 production in the gut, which improved intestinal barrier permeability and reduced endotoxemia. These changes were associated with increased IL-10 production by immune cells residing in liver and VAT. CONCLUSIONS: Indigo is a naturally occurring AhR ligand with anti-inflammatory properties that effectively protects against HFD-induced glucose dysregulation. Compounds derived from indigo or those with similar properties could represent novel therapies for diseases associated with obesity-related metabolic tissue inflammation.
Assuntos
Anti-Inflamatórios/farmacologia , Índigo Carmim/farmacologia , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Receptores de Hidrocarboneto Arílico/agonistas , Animais , Citocinas/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/químicaRESUMO
BACKGROUND: Fecal transplantation (FT) is a promising treatment for recurrent Clostridium difficile infection (CDI), but its true effectiveness remains unknown. We compared 14 days of oral vancomycin followed by a single FT by enema with oral vancomycin taper (standard of care) in adult patients experiencing acute recurrence of CDI. METHODS: In a phase 2/3, single-center, open-label trial, participants from Ontario, Canada, experiencing recurrence of CDI were randomly assigned in a 1:1 ratio to 14 days of oral vancomycin treatment followed by a single 500-mL FT by enema, or a 6-week taper of oral vancomycin. Patients with significant immunocompromise, history of fulminant CDI, or irreversible bleeding disorders were excluded. The primary endpoint was CDI recurrence within 120 days. Microbiota analysis was performed on fecal filtrate from donors and stool samples from FT recipients, as available. RESULTS: The study was terminated at the interim analysis after randomizing 30 patients. Nine of 16 (56.2%) patients who received FT and 5 of 12 (41.7%) in the vancomycin taper group experienced recurrence of CDI, corresponding with symptom resolution in 43.8% and 58.3%, respectively. Fecal microbiota analysis of 3 successful FT recipients demonstrated increased diversity. A futility analysis did not support continuing the study. Adverse events were similar in both groups and uncommon. CONCLUSIONS: In patients experiencing an acute episode of recurrent CDI, a single FT by enema was not significantly different from oral vancomycin taper in reducing recurrent CDI. Further research is needed to explore optimal donor selection, FT preparation, route, timing, and number of administrations. CLINICAL TRIALS REGISTRATION: NCT01226992.
Assuntos
Antibacterianos/administração & dosagem , Clostridioides difficile , Diarreia/terapia , Enterocolite Pseudomembranosa/terapia , Transplante de Microbiota Fecal , Vancomicina/administração & dosagem , Administração Oral , Adulto , Idoso , Antibacterianos/uso terapêutico , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Enterocolite Pseudomembranosa/tratamento farmacológico , Enterocolite Pseudomembranosa/microbiologia , Feminino , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade , Ontário , Recidiva , Vancomicina/uso terapêutico , Adulto JovemRESUMO
Vancomycin-resistant enterococci (VRE) are notorious clinical pathogens restricting the use of glycopeptide antibiotics in the clinic setting. Routine surveillance to detect VRE isolated from patients relies on PCR bioassays and chromogenic agar-based test methods. In recent years, we and others have reported the emergence of enterococcal strains harboring a "silent" copy of vancomycin resistance genes that confer a vancomycin-susceptible phenotype (vancomycin-susceptible enterococci [VSE]) and thus escape detection using drug sensitivity screening tests. Alarmingly, these strains are able to convert to a resistance phenotype (VSEâVRE) during antibiotic treatment, severely compromising the success of therapy. Such strains have been termed vancomycin-variable enterococci (VVE). We have investigated the molecular mechanisms leading to the restoration of resistance in VVE isolates through the whole-genome sequencing of resistant isolates, measurement of resistance gene expression, and quantification of the accumulation of drug-resistant peptidoglycan precursors. The results demonstrate that VVE strains can revert to a VRE phenotype through the constitutive expression of the vancomycin resistance cassette. This is accomplished through a variety of changes in the DNA region upstream of the resistance genes that includes both a deletion of a likely transcription inhibitory secondary structure and the introduction of a new unregulated promoter. The VSEâVRE transition of VVE can occur in patients during the course of antibiotic therapy, resulting in treatment failure. These VVE strains therefore pose a new challenge to the current regimen of diagnostic tests used for VRE detection in the clinic setting.
Assuntos
Antibacterianos/farmacologia , Enterococcus/efeitos dos fármacos , Resistência a Vancomicina , Vancomicina/farmacologia , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Enterococcus/isolamento & purificação , Reação em Cadeia da Polimerase , Regiões Promotoras GenéticasRESUMO
We report the emergence of vancomycin resistance in a patient colonized with a vanA-containing, vanRS-negative isolate of Enterococcus faecium which was initially vancomycin susceptible. This is a previously undescribed mechanism of drug resistance with diagnostic and therapeutic implications.
Assuntos
Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Infecções por Bactérias Gram-Positivas/diagnóstico , Resistência a Vancomicina/genética , Vancomicina/uso terapêutico , Idoso , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Enterococcus faecium/efeitos dos fármacos , Genes Bacterianos/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Masculino , Testes de Sensibilidade Microbiana/métodosRESUMO
Vaginal colonization by fungi may elicit genital inflammation and enhance the risk of adverse reproductive health outcomes, such as HIV acquisition. Cross-sectional studies have linked fungi with an absence of bacterial vaginosis (BV), but it is unclear whether shifts in vaginal bacteria alter the abundance of vaginal fungi. Vaginal swabs collected following topical metronidazole treatment for BV during the phase 2b, placebo-controlled trial of LACTIN-V, a Lactobacillus crispatus-based live biotherapeutic, were assayed with semi-quantitative PCR for the relative quantitation of fungi and key bacterial species and multiplex immunoassay for immune factors. Vaginal fungi increased immediately following metronidazole treatment for BV (adjusted P = 0.0006), with most of this increase attributable to Candida albicans. Vaginal fungi were independently linked to elevated levels of the proinflammatory cytokine interleukin (IL) 17A, although this association did not remain significant after correcting for multiple comparisons. Fungal relative abundance by semi-quantitative PCR returned to baseline levels within 1 month of metronidazole treatment and was not affected by LACTIN-V or placebo administration. Fungal abundance was positively associated with Lactobacillus species, negatively associated with BV-associated bacteria, and positively associated with a variety of proinflammatory cytokines and chemokines, including IL-17A, during and after study product administration. Antibiotic treatment for BV resulted in a transient expanded abundance of vaginal fungi in a subset of women which was unaffected by subsequent administration of LACTIN-V. Vaginal fungi were positively associated with Lactobacillus species and IL-17A and negatively associated with BV-associated bacteria; these associations were most pronounced in the longer-term outcomes.IMPORTANCEVaginal colonization by fungi can enhance the risk of adverse reproductive health outcomes and HIV acquisition, potentially by eliciting genital mucosal inflammation. We show that standard antibiotic treatment for bacterial vaginosis (BV) results in a transient increase in the absolute abundance of vaginal fungi, most of which was identified as Candida albicans. Vaginal fungi were positively associated with proinflammatory immune factors and negatively associated with BV-associated bacteria. These findings improve our understanding of how shifts in the bacterial composition of the vaginal microbiota may enhance proliferation by proinflammatory vaginal fungi, which may have important implications for risk of adverse reproductive health outcomes among women.
Assuntos
Metronidazol , Microbiota , Vagina , Vaginose Bacteriana , Feminino , Humanos , Vagina/microbiologia , Vagina/imunologia , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/imunologia , Vaginose Bacteriana/tratamento farmacológico , Microbiota/efeitos dos fármacos , Adulto , Candida albicans/imunologia , Candida albicans/efeitos dos fármacos , Lactobacillus crispatus/isolamento & purificação , Interleucina-17/metabolismo , Adulto Jovem , Fungos/classificação , Fungos/isolamento & purificação , Fungos/efeitos dos fármacos , Lactobacillus , Citocinas/metabolismo , Probióticos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacosRESUMO
BACKGROUND: Bacterial vaginosis (BV) increases HIV acquisition risk, potentially by eliciting genital inflammation. After BV treatment, the vaginal administration of LACTIN-V, a live biotherapeutic containing the Lactobacillus crispatus strain CTV-05, reduced BV recurrence and vaginal inflammation; however, 3 months after product cessation, CTV-05 colonization was only sustained in 48% of participants. RESULTS: This nested sub-study in 32 participants receiving LACTIN-V finds that 72% (23/32) demonstrate clinically relevant colonization (CTV-05 absolute abundance > 106 CFU/mL) during at least one visit while 28% (9/32) of women demonstrate colonization resistance, even during product administration. Immediately prior to LACTIN-V administration, the colonization-resistant group exhibited elevated vaginal microbiota diversity. During LACTIN-V administration, colonization resistance was associated with elevated vaginal markers of epithelial disruption and reduced chemokines, possibly due to elevated absolute abundance of BV-associated species and reduced L. crispatus. Colonization permissive women were stratified into sustained and transient colonization groups (31% and 41% of participants, respectively) based on CTV-05 colonization after cessation of product administration. These groups also exhibited distinct genital immune profiles during LACTIN-V administration. CONCLUSIONS: The genital immune impact of LACTIN-V may be contingent on the CTV-05 colonization phenotype, which is in turn partially dependent on the success of BV clearance prior to LACTIN-V administration.
Assuntos
Lactobacillus crispatus , Vagina , Vaginose Bacteriana , Humanos , Feminino , Vaginose Bacteriana/microbiologia , Vaginose Bacteriana/imunologia , Vagina/microbiologia , Adulto , Probióticos/administração & dosagem , Administração Intravaginal , Microbiota , Adulto Jovem , FenótipoAssuntos
Bacteriemia , Sepse/microbiologia , Antibacterianos , Cefepima , Bactérias Gram-Negativas , Humanos , Meropeném , Probabilidade , TazobactamRESUMO
The "HACEK" organisms are a group of fastidious Gram-negative bacteria that cause a variety of infections, including infective endocarditis. Antimicrobial susceptibility testing is not universally available, and therapy for these infections is often empirical. We report the antimicrobial susceptibilities of 70 clinical HACEK isolates to 18 antimicrobials. All isolates were susceptible to ceftriaxone and levofloxacin, indicating that these agents remain appropriate empirical choices for the treatment of infections with this group of organisms.
Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Ceftriaxona/farmacologia , Levofloxacino , Testes de Sensibilidade Microbiana , Ofloxacino/farmacologiaRESUMO
Interactions between the microbiome and medical therapies are distinct and bidirectional. The existing term "pharmacomicrobiomics" describes the effects of the microbiome on drug distribution, metabolism, efficacy, and toxicity. We propose that the term "pharmacoecology" be used to describe the effects that drugs and other medical interventions such as probiotics have on microbiome composition and function. We suggest that the terms are complementary but distinct and that both are potentially important when assessing drug safety and efficacy as well as drug-microbiome interactions. As a proof of principle, we describe the ways in which these concepts apply to antimicrobial and non-antimicrobial medications.
RESUMO
Intestinal colonization with pathogens and antimicrobial-resistant organisms (AROs) is associated with increased risk of infection. Fecal microbiota transplant (FMT) has successfully been used to cure recurrent Clostridioides difficile infection (rCDI) and to decolonize intestinal AROs. However, FMT has significant practical barriers to safe and broad implementation. Microbial consortia represent a novel strategy for ARO and pathogen decolonization, with practical and safety advantages over FMT. We undertook an investigator-initiated analysis of stool samples collected from previous interventional studies of a microbial consortium, microbial ecosystem therapeutic (MET-2), and FMT for rCDI before and after treatment. Our aim was to assess whether MET-2 was associated with decreased Pseudomonadota (Proteobacteria) and antimicrobial resistance gene (ARG) burden with similar effects to FMT. Participants were selected for inclusion if baseline stool had Pseudomonadota relative abundance ≥10%. Pre- and post-treatment Pseudomonadota relative abundance, total ARGs, and obligate anaerobe and butyrate-producer relative abundances were determined by shotgun metagenomic sequencing. MET-2 administration had similar effects to FMT on microbiome outcomes. The median Pseudomonadota relative abundance decreased by four logs after MET-2 treatment, a greater decrease than that observed after FMT. Total ARGs decreased, while beneficial obligate anaerobe and butyrate-producer relative abundances increased. The observed microbiome response remained stable over 4 months post-administration for all outcomes. IMPORTANCE Overgrowth of intestinal pathogens and AROs is associated with increased risk of infection. With the rise in antimicrobial resistance, new therapeutic strategies that decrease pathogen and ARO colonization in the gut are needed. We evaluated whether a microbial consortium had similar effects to FMT on Pseudomonadota abundances and ARGs as well as obligate anaerobes and beneficial butyrate producers in individuals with high Pseudomonadota relative abundance at baseline. This study provides support for a randomized, controlled clinical trial of microbial consortia (such as MET-2) for ARO decolonization and anaerobe repletion.