Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell ; 187(14): 3761-3778.e16, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843834

RESUMO

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.


Assuntos
Peptídeos Antimicrobianos , Aprendizado de Máquina , Microbiota , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Humanos , Animais , Antibacterianos/farmacologia , Camundongos , Metagenoma , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos
2.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730850

RESUMO

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Assuntos
Regulação da Expressão Gênica , Metagenoma , Oceanos e Mares , Transcriptoma/genética , Geografia , Microbiota/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar/microbiologia , Temperatura
3.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730851

RESUMO

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Assuntos
Biodiversidade , Plâncton/fisiologia , Água do Mar/microbiologia , Geografia , Modelos Teóricos , Oceanos e Mares , Filogenia
4.
Nature ; 626(7998): 377-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109938

RESUMO

Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.


Assuntos
Archaea , Bactérias , Ecossistema , Evolução Molecular , Genes Arqueais , Genes Bacterianos , Genômica , Conhecimento , Peptídeos Antimicrobianos/genética , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biomarcadores , Movimento Celular/genética , Neoplasias Colorretais/genética , Genômica/métodos , Genômica/tendências , Metagenômica/tendências , Família Multigênica , Filogenia , Reprodutibilidade dos Testes
5.
Nature ; 601(7892): 252-256, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912116

RESUMO

Microbial genes encode the majority of the functional repertoire of life on earth. However, despite increasing efforts in metagenomic sequencing of various habitats1-3, little is known about the distribution of genes across the global biosphere, with implications for human and planetary health. Here we constructed a non-redundant gene catalogue of 303 million species-level genes (clustered at 95% nucleotide identity) from 13,174 publicly available metagenomes across 14 major habitats and use it to show that most genes are specific to a single habitat. The small fraction of genes found in multiple habitats is enriched in antibiotic-resistance genes and markers for mobile genetic elements. By further clustering these species-level genes into 32 million protein families, we observed that a small fraction of these families contain the majority of the genes (0.6% of families account for 50% of the genes). The majority of species-level genes and protein families are rare. Furthermore, species-level genes, and in particular the rare ones, show low rates of positive (adaptive) selection, supporting a model in which most genetic variability observed within each protein family is neutral or nearly neutral.


Assuntos
Metagenoma , Metagenômica , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Ecossistema , Humanos , Metagenoma/genética
7.
Nature ; 600(7889): 500-505, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880489

RESUMO

During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1-5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug-host-microbiome interactions in cardiometabolic disease.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Microbiota , Clostridiales , Humanos , Metaboloma
8.
Nature ; 581(7808): 310-315, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433607

RESUMO

Microbiome community typing analyses have recently identified the Bacteroides2 (Bact2) enterotype, an intestinal microbiota configuration that is associated with systemic inflammation and has a high prevalence in loose stools in humans1,2. Bact2 is characterized by a high proportion of Bacteroides, a low proportion of Faecalibacterium and low microbial cell densities1,2, and its prevalence varies from 13% in a general population cohort to as high as 78% in patients with inflammatory bowel disease2. Reported changes in stool consistency3 and inflammation status4 during the progression towards obesity and metabolic comorbidities led us to propose that these developments might similarly correlate with an increased prevalence of the potentially dysbiotic Bact2 enterotype. Here, by exploring obesity-associated microbiota alterations in the quantitative faecal metagenomes of the cross-sectional MetaCardis Body Mass Index Spectrum cohort (n = 888), we identify statin therapy as a key covariate of microbiome diversification. By focusing on a subcohort of participants that are not medicated with statins, we find that the prevalence of Bact2 correlates with body mass index, increasing from 3.90% in lean or overweight participants to 17.73% in obese participants. Systemic inflammation levels in Bact2-enterotyped individuals are higher than predicted on the basis of their obesity status, indicative of Bact2 as a dysbiotic microbiome constellation. We also observe that obesity-associated microbiota dysbiosis is negatively associated with statin treatment, resulting in a lower Bact2 prevalence of 5.88% in statin-medicated obese participants. This finding is validated in both the accompanying MetaCardis cardiovascular disease dataset (n = 282) and the independent Flemish Gut Flora Project population cohort (n = 2,345). The potential benefits of statins in this context will require further evaluation in a prospective clinical trial to ascertain whether the effect is reproducible in a randomized population and before considering their application as microbiota-modulating therapeutics.


Assuntos
Disbiose/epidemiologia , Disbiose/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Bacteroides/isolamento & purificação , Estudos de Coortes , Estudos Transversais , Faecalibacterium/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doenças Inflamatórias Intestinais/microbiologia , Masculino , Obesidade/microbiologia , Prevalência
9.
Nucleic Acids Res ; 51(W1): W493-W500, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207327

RESUMO

Metagenomics can be used to monitor the spread of antibiotic resistance genes (ARGs). ARGs found in databases such as ResFinder and CARD primarily originate from culturable and pathogenic bacteria, while ARGs from non-culturable and non-pathogenic bacteria remain understudied. Functional metagenomics is based on phenotypic gene selection and can identify ARGs from non-culturable bacteria with a potentially low identity shared with known ARGs. In 2016, the ResFinderFG v1.0 database was created to collect ARGs from functional metagenomics studies. Here, we present the second version of the database, ResFinderFG v2.0, which is available on the Center of Genomic Epidemiology web server (https://cge.food.dtu.dk/services/ResFinderFG/). It comprises 3913 ARGs identified by functional metagenomics from 50 carefully curated datasets. We assessed its potential to detect ARGs in comparison to other popular databases in gut, soil and water (marine + freshwater) Global Microbial Gene Catalogues (https://gmgc.embl.de). ResFinderFG v2.0 allowed for the detection of ARGs that were not detected using other databases. These included ARGs conferring resistance to beta-lactams, cycline, phenicol, glycopeptide/cycloserine and trimethoprim/sulfonamide. Thus, ResFinderFG v2.0 can be used to identify ARGs differing from those found in conventional databases and therefore improve the description of resistomes.


Assuntos
Antibacterianos , Bases de Dados Genéticas , Resistência Microbiana a Medicamentos , Metagenômica , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Internet
10.
Proteomics ; 24(12-13): e2300105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458994

RESUMO

Peptides have a plethora of activities in biological systems that can potentially be exploited biotechnologically. Several peptides are used clinically, as well as in industry and agriculture. The increase in available 'omics data has recently provided a large opportunity for mining novel enzymes, biosynthetic gene clusters, and molecules. While these data primarily consist of DNA sequences, other types of data provide important complementary information. Due to their size, the approaches proven successful at discovering novel proteins of canonical size cannot be naïvely applied to the discovery of peptides. Peptides can be encoded directly in the genome as short open reading frames (smORFs), or they can be derived from larger proteins by proteolysis. Both of these peptide classes pose challenges as simple methods for their prediction result in large numbers of false positives. Similarly, functional annotation of larger proteins, traditionally based on sequence similarity to infer orthology and then transferring functions between characterized proteins and uncharacterized ones, cannot be applied for short sequences. The use of these techniques is much more limited and alternative approaches based on machine learning are used instead. Here, we review the limitations of traditional methods as well as the alternative methods that have recently been developed for discovering novel bioactive peptides with a focus on prokaryotic genomes and metagenomes.


Assuntos
Biologia Computacional , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/genética , Biologia Computacional/métodos , Proteômica/métodos , Humanos , Fases de Leitura Aberta/genética , Aprendizado de Máquina
11.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36124759

RESUMO

Microbial community classification enables identification of putative type and source of the microbial community, thus facilitating a better understanding of how the taxonomic and functional structure were developed and maintained. However, previous classification models required a trade-off between speed and accuracy, and faced difficulties to be customized for a variety of contexts, especially less studied contexts. Here, we introduced EXPERT based on transfer learning that enabled the classification model to be adaptable in multiple contexts, with both high efficiency and accuracy. More importantly, we demonstrated that transfer learning can facilitate microbial community classification in diverse contexts, such as classification of microbial communities for multiple diseases with limited number of samples, as well as prediction of the changes in gut microbiome across successive stages of colorectal cancer. Broadly, EXPERT enables accurate and context-aware customized microbial community classification, and potentiates novel microbial knowledge discovery.


Assuntos
Microbioma Gastrointestinal , Microbiota , Aprendizagem , Aprendizado de Máquina
12.
Bioinformatics ; 39(39 Suppl 1): i21-i29, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387171

RESUMO

MOTIVATION: Metagenomic binning methods to reconstruct metagenome-assembled genomes (MAGs) from environmental samples have been widely used in large-scale metagenomic studies. The recently proposed semi-supervised binning method, SemiBin, achieved state-of-the-art binning results in several environments. However, this required annotating contigs, a computationally costly and potentially biased process. RESULTS: We propose SemiBin2, which uses self-supervised learning to learn feature embeddings from the contigs. In simulated and real datasets, we show that self-supervised learning achieves better results than the semi-supervised learning used in SemiBin1 and that SemiBin2 outperforms other state-of-the-art binners. Compared to SemiBin1, SemiBin2 can reconstruct 8.3-21.5% more high-quality bins and requires only 25% of the running time and 11% of peak memory usage in real short-read sequencing samples. To extend SemiBin2 to long-read data, we also propose ensemble-based DBSCAN clustering algorithm, resulting in 13.1-26.3% more high-quality genomes than the second best binner for long-read data. AVAILABILITY AND IMPLEMENTATION: SemiBin2 is available as open source software at https://github.com/BigDataBiology/SemiBin/ and the analysis scripts used in the study can be found at https://github.com/BigDataBiology/SemiBin2_benchmark.


Assuntos
Algoritmos , Metagenoma , Análise por Conglomerados , Metagenômica , Software
13.
Nature ; 560(7717): 233-237, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069051

RESUMO

Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1-4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial-fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Planeta Terra , Fungos/isolamento & purificação , Microbiota/fisiologia , Microbiologia do Solo , Bactérias/genética , Código de Barras de DNA Taxonômico , Resistência Microbiana a Medicamentos/genética , Fungos/genética , Concentração de Íons de Hidrogênio , Metagenômica , Microbiota/genética , Oceanos e Mares , Chuva , Água do Mar/microbiologia
14.
Nucleic Acids Res ; 50(6): 3155-3168, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35323968

RESUMO

Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.


Assuntos
Bactérias , Bacteriófagos , Bactérias/genética , Bacteriófagos/genética , Elementos de DNA Transponíveis/genética , Resistência Microbiana a Medicamentos/genética , Transferência Genética Horizontal , Filogenia , Recombinases/genética
15.
Gut ; 71(12): 2463-2480, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35017197

RESUMO

OBJECTIVES: Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN: We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS: Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION: Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER: NCT02059538.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade Mórbida , Complexo Vitamínico B , Humanos , Camundongos , Animais , Prebióticos , Obesidade Mórbida/cirurgia , Biotina/farmacologia , Complexo Vitamínico B/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Inflamação
16.
Nature ; 532(7600): 465-470, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26863193

RESUMO

The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.


Assuntos
Organismos Aquáticos/metabolismo , Carbono/metabolismo , Ecossistema , Plâncton/metabolismo , Água do Mar/química , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Clorofila/metabolismo , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Dinoflagellida/metabolismo , Expedições , Genes Bacterianos , Genes Virais , Geografia , Oceanos e Mares , Fotossíntese , Plâncton/genética , Plâncton/isolamento & purificação , Água do Mar/microbiologia , Água do Mar/parasitologia , Synechococcus/genética , Synechococcus/isolamento & purificação , Synechococcus/metabolismo , Synechococcus/virologia
17.
Nucleic Acids Res ; 48(D1): D621-D625, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31647096

RESUMO

Microbiology depends on the availability of annotated microbial genomes for many applications. Comparative genomics approaches have been a major advance, but consistent and accurate annotations of genomes can be hard to obtain. In addition, newer concepts such as the pan-genome concept are still being implemented to help answer biological questions. Hence, we present proGenomes2, which provides 87 920 high-quality genomes in a user-friendly and interactive manner. Genome sequences and annotations can be retrieved individually or by taxonomic clade. Every genome in the database has been assigned to a species cluster and most genomes could be accurately assigned to one or multiple habitats. In addition, general functional annotations and specific annotations of antibiotic resistance genes and single nucleotide variants are provided. In short, proGenomes2 provides threefold more genomes, enhanced habitat annotations, updated taxonomic and functional annotation and improved linkage to the NCBI BioSample database. The database is available at http://progenomes.embl.de/.


Assuntos
Bases de Dados Genéticas , Genoma Arqueal , Genoma Bacteriano , Genômica , Biologia Computacional/métodos , Ecossistema , Internet , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Células Procarióticas , Reprodutibilidade dos Testes , Software
18.
Environ Microbiol ; 23(1): 316-326, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185929

RESUMO

Bacteria and fungi are of uttermost importance in determining environmental and host functioning. Despite close interactions between animals, plants, their associated microbiomes, and the environment they inhabit, the distribution and role of bacteria and especially fungi across host and environments as well as the cross-habitat determinants of their community compositions remain little investigated. Using a uniquely broad global dataset of 13 483 metagenomes, we analysed the microbiome structure and function of 25 host-associated and environmental habitats, focusing on potential interactions between bacteria and fungi. We found that the metagenomic relative abundance ratio of bacteria-to-fungi is a distinctive microbial feature of habitats. Compared with fungi, the cross-habitat distribution pattern of bacteria was more strongly driven by habitat type. Fungal diversity was depleted in host-associated communities compared with those in the environment, particularly terrestrial habitats, whereas this diversity pattern was less pronounced for bacteria. The relative gene functional potential of bacteria or fungi reflected their diversity patterns and appeared to depend on a balance between substrate availability and biotic interactions. Alongside helping to identify hotspots and sources of microbial diversity, our study provides support for differences in assembly patterns and processes between bacterial and fungal communities across different habitats.


Assuntos
Bactérias/genética , Biodiversidade , Fungos/genética , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/isolamento & purificação , Metagenoma , Metagenômica , Microbiota , Micobioma , Plantas/microbiologia
19.
Genome Res ; 28(4): 561-568, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29496731

RESUMO

Vertical transmission of bacteria from mother to infant at birth is postulated to initiate a life-long host-microbe symbiosis, playing an important role in early infant development. However, only the tracking of strictly defined unique microbial strains can clarify where the intestinal bacteria come from, how long the initial colonizers persist, and whether colonization by other strains from the environment can replace existing ones. Using rare single nucleotide variants in fecal metagenomes of infants and their family members, we show strong evidence of selective and persistent transmission of maternal strain populations to the vaginally born infant and their occasional replacement by strains from the environment, including those from family members, in later childhood. Only strains from the classes Actinobacteria and Bacteroidia, which are essential components of the infant microbiome, are transmitted from the mother and persist for at least 1 yr. In contrast, maternal strains of Clostridia, a dominant class in the mother's gut microbiome, are not observed in the infant. Caesarean-born infants show a striking lack of maternal transmission at birth. After the first year, strain influx from the family environment occurs and continues even in adulthood. Fathers appear to be more frequently donors of novel strains to other family members than receivers. Thus, the infant gut is seeded by selected maternal bacteria, which expand to form a stable community, with a rare but stable continuing strain influx over time.


Assuntos
Actinobacteria/genética , Bacteroidetes/genética , Clostridiaceae/genética , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Microbiota/genética , Relações Mãe-Filho , Mães , Polimorfismo de Nucleotídeo Único/genética , Gravidez , RNA Ribossômico 16S/genética
20.
PLoS Comput Biol ; 20(3): e1011920, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489255
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA