Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0158723, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534112

RESUMO

AZD7442 is a combination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies, tixagevimab and cilgavimab, developed for pre-exposure prophylaxis (PrEP) and treatment of coronavirus disease 2019 (COVID-19). Using data from eight clinical trials, we describe a population pharmacokinetic (popPK) model of AZD7442 and show how modeling of "interim" data accelerated decision-making during the COVID-19 pandemic. The final model was a two-compartmental distribution model with first-order absorption and elimination, including standard allometric exponents for the effect of body weight on clearance and volume. Other covariates included were as follows: sex, age >65 years, body mass index ≥30 kg/m2, and diabetes on absorption rate; diabetes on clearance; Black race on central volume; and intramuscular (IM) injection site on bioavailability. Simulations indicated that IM injection site and body weight had > 20% effects on AZD7442 exposure, but no covariates were considered to have a clinically relevant impact requiring dose adjustment. The pharmacokinetics of AZD7442, cilgavimab, and tixagevimab were comparable and followed linear kinetics with extended half-lives (median 78.6 days for AZD7442), affording prolonged protection against susceptible SARS-CoV-2 variants. Comparison of popPK simulations based on "interim data" with a target concentration based on 80% viral inhibition and assuming 1.81% partitioning into the nasal lining fluid supported a decision to double the PrEP dosage from 300 mg to 600 mg to prolong protection against Omicron variants. Serum AZD7442 concentrations in adolescents weighing 40-95 kg were predicted to be only marginally different from those observed in adults, supporting authorization for use in adolescents before clinical data were available. In these cases, popPK modeling enabled accelerated clinical decision-making.


Assuntos
Anticorpos Monoclonais Humanizados , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/efeitos dos fármacos , Feminino , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Idoso , Adulto , COVID-19/prevenção & controle , Antivirais/farmacocinética , Antivirais/uso terapêutico , Adulto Jovem , Adolescente , Anticorpos Neutralizantes/sangue
2.
Artigo em Inglês | MEDLINE | ID: mdl-32152087

RESUMO

Antibiotics revolutionized the treatment of infectious diseases; however, it is now clear that broad-spectrum antibiotics alter the composition and function of the host's microbiome. The microbiome plays a key role in human health, and its perturbation is increasingly recognized as contributing to many human diseases. Widespread broad-spectrum antibiotic use has also resulted in the emergence of multidrug-resistant pathogens, spurring the development of pathogen-specific strategies such as monoclonal antibodies (MAbs) to combat bacterial infection. Not only are pathogen-specific approaches not expected to induce resistance in nontargeted bacteria, but they are hypothesized to have minimal impact on the gut microbiome. Here, we compare the effects of antibiotics, pathogen-specific MAbs, and their controls (saline or control IgG [c-IgG]) on the gut microbiome of 7-week-old, female, C57BL/6 mice. The magnitude of change in taxonomic abundance, bacterial diversity, and bacterial metabolites, including short-chain fatty acids (SCFA) and bile acids in the fecal pellets from mice treated with pathogen-specific MAbs, was no different from that with animals treated with saline or an IgG control. Conversely, dramatic changes were observed in the relative abundance, as well as alpha and beta diversity, of the fecal microbiome and bacterial metabolites in the feces of all antibiotic-treated mice. Taken together, these results indicate that pathogen-specific MAbs do not alter the fecal microbiome like broad-spectrum antibiotics and may represent a safer, more-targeted approach to antibacterial therapy.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Ácidos e Sais Biliares/metabolismo , DNA Bacteriano/análise , Ácidos Graxos/metabolismo , Fezes/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Organismos Livres de Patógenos Específicos
3.
Nature ; 506(7489): 503-6, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24463523

RESUMO

The tissue-resident macrophages of barrier organs constitute the first line of defence against pathogens at the systemic interface with the ambient environment. In the lung, resident alveolar macrophages (AMs) provide a sentinel function against inhaled pathogens. Bacterial constituents ligate Toll-like receptors (TLRs) on AMs, causing AMs to secrete proinflammatory cytokines that activate alveolar epithelial receptors, leading to recruitment of neutrophils that engulf pathogens. Because the AM-induced response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, using real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall form connexin 43 (Cx43)-containing gap junction channels with the epithelium. During lipopolysaccharide-induced inflammation, the AMs remained sessile and attached to the alveoli, and they established intercommunication through synchronized Ca(2+) waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca(2+)-dependent activation of Akt, because AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage. A picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation.


Assuntos
Comunicação Celular , Macrófagos Alveolares/citologia , Macrófagos Alveolares/imunologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Cálcio/metabolismo , Adesão Celular , Conexina 43/deficiência , Conexina 43/genética , Conexina 43/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Junções Comunicantes/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/imunologia , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/patologia
4.
Proc Natl Acad Sci U S A ; 114(26): E5094-E5102, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607050

RESUMO

Infection is a major complication of implantable medical devices, which provide a scaffold for biofilm formation, thereby reducing susceptibility to antibiotics and complicating treatment. Hematogenous implant-related infections following bacteremia are particularly problematic because they can occur at any time in a previously stable implant. Herein, we developed a model of hematogenous infection in which an orthopedic titanium implant was surgically placed in the legs of mice followed 3 wk later by an i.v. exposure to Staphylococcus aureus This procedure resulted in a marked propensity for a hematogenous implant-related infection comprised of septic arthritis, osteomyelitis, and biofilm formation on the implants in the surgical legs compared with sham-operated surgical legs without implant placement and with contralateral nonoperated normal legs. Neutralizing human monoclonal antibodies against α-toxin (AT) and clumping factor A (ClfA), especially in combination, inhibited biofilm formation in vitro and the hematogenous implant-related infection in vivo. Our findings suggest that AT and ClfA are pathogenic factors that could be therapeutically targeted against Saureus hematogenous implant-related infections.


Assuntos
Anticorpos Antibacterianos/farmacologia , Anticorpos Neutralizantes/farmacologia , Artrite Infecciosa , Biofilmes/efeitos dos fármacos , Implantes Experimentais/microbiologia , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus/fisiologia , Animais , Artrite Infecciosa/tratamento farmacológico , Artrite Infecciosa/etiologia , Artrite Infecciosa/microbiologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Osteomielite/tratamento farmacológico , Osteomielite/etiologia , Osteomielite/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/microbiologia , Titânio
5.
Artigo em Inglês | MEDLINE | ID: mdl-31138566

RESUMO

Surgical site infections (SSIs) are commonly caused by Staphylococcus aureus We report that a combination of three monoclonal antibodies (MEDI6389) that neutralize S. aureus alpha-toxin, clumping factor A, and four leukocidins (LukSF, LukED, HlgAB, and HlgCB) plus vancomycin had enhanced efficacy compared with control antibody plus vancomycin in two mouse models of S. aureus SSI. Therefore, monoclonal antibody-based neutralization of multiple S. aureus virulence factors may provide an adjunctive perioperative approach to combat S. aureus SSIs.


Assuntos
Antibacterianos/farmacologia , Anticorpos Monoclonais/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecção da Ferida Cirúrgica/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Proteínas de Bactérias/imunologia , Anticorpos Amplamente Neutralizantes/farmacologia , Coagulase/imunologia , Leucocidinas/imunologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Infecções Estafilocócicas/microbiologia , Infecção da Ferida Cirúrgica/microbiologia , Vancomicina/farmacologia
6.
Respir Res ; 20(1): 162, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324219

RESUMO

Animal models remain invaluable for study of respiratory diseases, however, translation of data generated in genetically homogeneous animals housed in a clean and well-controlled environment does not necessarily provide insight to the human disease situation. In vitro human systems such as air liquid interface (ALI) cultures and organ-on-a-chip models have attempted to bridge the divide between animal models and human patients. However, although 3D in nature, these models struggle to recreate the architecture and complex cellularity of the airways and parenchyma, and therefore cannot mimic the complex cell-cell interactions in the lung. To address this issue, lung slices have emerged as a useful ex vivo tool for studying the respiratory responses to inflammatory stimuli, infection, and novel drug compounds. This review covers the practicality of precision cut lung slice (PCLS) generation and benefits of this ex vivo culture system in modeling human lung biology and disease pathogenesis.


Assuntos
Asma/patologia , Pulmão/patologia , Pulmão/fisiologia , Pesquisa Translacional Biomédica/métodos , Animais , Asma/fisiopatologia , Humanos , Técnicas de Cultura de Órgãos/métodos
7.
Am J Respir Cell Mol Biol ; 59(6): 745-756, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30109945

RESUMO

Pseudomonas aeruginosa and Klebsiella pneumoniae are two common gram-negative pathogens that are associated with bacterial pneumonia and can often be isolated from the same patient. We used a mixed-pathogen pneumonia infection model in which mice were infected with sublethal concentrations of P. aeruginosa and K. pneumoniae, resulting in significant lethality, outgrowth of both bacteria in the lung, and systemic dissemination of K. pneumoniae. Inflammation, induced by P. aeruginosa activation of Toll-like receptor 5, results in prolonged neutrophil recruitment to the lung and increased levels of neutrophil elastase in the airway, resulting in lung damage and epithelial barrier dysfunction. Live P. aeruginosa was not required to potentiate K. pneumoniae infection, and flagellin alone was sufficient to induce lethality when delivered along with Klebsiella. Prophylaxis with an anti-Toll-like receptor 5 antibody or Sivelestat, a neutrophil elastase inhibitor, reduced neutrophil influx, inflammation, and mortality. Furthermore, pathogen-specific monoclonal antibodies targeting P. aeruginosa or K. pneumoniae prevented the outgrowth of both bacteria and reduced host inflammation and lethality. These findings suggest that coinfection with P. aeruginosa may enable the outgrowth and dissemination of K. pneumoniae, and that a pathogen- or host-specific prophylactic approach targeting P. aeruginosa may prevent or limit the severity of such infections by reducing neutrophil-induced lung damage.


Assuntos
Coinfecção/imunologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Neutrófilos/imunologia , Pneumonia/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Células Cultivadas , Coinfecção/microbiologia , Coinfecção/patologia , Feminino , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/microbiologia , Neutrófilos/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Receptor 5 Toll-Like/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29311091

RESUMO

Staphylococcus aureus wound infections delay healing and result in invasive complications such as osteomyelitis, especially in the setting of diabetic foot ulcers. In preclinical animal models of S. aureus skin infection, antibody neutralization of alpha-toxin (AT), an S. aureus-secreted pore-forming cytolytic toxin, reduces disease severity by inhibiting skin necrosis and restoring effective host immune responses. However, whether therapeutic neutralization of alpha-toxin is effective against S. aureus-infected wounds is unclear. Herein, the efficacy of prophylactic treatment with a human neutralizing anti-AT monoclonal antibody (MAb) was evaluated in an S. aureus skin wound infection model in nondiabetic and diabetic mice. In both nondiabetic and diabetic mice, anti-AT MAb treatment decreased wound size and bacterial burden and enhanced reepithelialization and wound resolution compared to control MAb treatment. Anti-AT MAb had distinctive effects on the host immune response, including decreased neutrophil and increased monocyte and macrophage infiltrates in nondiabetic mice and decreased neutrophil extracellular traps (NETs) in diabetic mice. Similar therapeutic efficacy was achieved with an active vaccine targeting AT. Taken together, neutralization of AT had a therapeutic effect against S. aureus-infected wounds in both nondiabetic and diabetic mice that was associated with differential effects on the host immune response.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Diabetes Mellitus Experimental/imunologia , Proteínas Hemolisinas/antagonistas & inibidores , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Ferimentos não Penetrantes/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Toxinas Bacterianas/imunologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/microbiologia , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/microbiologia , Proteínas Hemolisinas/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/microbiologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/complicações , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/farmacologia , Cicatrização/imunologia , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/imunologia , Ferimentos não Penetrantes/microbiologia
9.
PLoS Pathog ; 11(4): e1004820, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25880560

RESUMO

Staphylococcus aureus USA300 strains cause a highly inflammatory necrotizing pneumonia. The virulence of this strain has been attributed to its expression of multiple toxins that have diverse targets including ADAM10, NLRP3 and CD11b. We demonstrate that induction of necroptosis through RIP1/RIP3/MLKL signaling is a major consequence of S. aureus toxin production. Cytotoxicity could be prevented by inhibiting either RIP1 or MLKL signaling and S. aureus mutants lacking agr, hla or Hla pore formation, lukAB or psms were deficient in inducing cell death in human and murine immune cells. Toxin-associated pore formation was essential, as cell death was blocked by exogenous K+ or dextran. MLKL inhibition also blocked caspase-1 and IL-1ß production, suggesting a link to the inflammasome. Rip3(-/-) mice exhibited significantly improved staphylococcal clearance and retained an alveolar macrophage population with CD200R and CD206 markers in the setting of acute infection, suggesting increased susceptibility of these leukocytes to necroptosis. The importance of this anti-inflammatory signaling was indicated by the correlation between improved outcome and significantly decreased expression of KC, IL-6, TNF, IL-1α and IL-1ß in infected mice. These findings indicate that toxin-induced necroptosis is a major cause of lung pathology in S. aureus pneumonia and suggest the possibility of targeting components of this signaling pathway as a therapeutic strategy.


Assuntos
Toxinas Bacterianas/efeitos adversos , Macrófagos Alveolares/metabolismo , Pneumonia Estafilocócica/patologia , Transdução de Sinais/fisiologia , Animais , Toxinas Bacterianas/metabolismo , Western Blotting , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Pneumonia Estafilocócica/metabolismo
10.
PLoS Pathog ; 9(10): e1003682, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098127

RESUMO

The type III interferon (IFNλ) receptor IL-28R is abundantly expressed in the respiratory tract and has been shown essential for host defense against some viral pathogens, however no data are available concerning its role in the innate immune response to bacterial pathogens. Staphylococcus aureus and Pseudomonas aeruginosa induced significant production of IFNλ in the lung, and clearance of these bacteria from the lung was significantly increased in IL-28R null mice compared to controls. Improved bacterial clearance correlated with reduced lung pathology and a reduced ratio of pro- vs anti-inflammatory cytokines in the airway. In human epithelial cells IFNλ inhibited miR-21 via STAT3 resulting in upregulation of PDCD4, a protein known to promote inflammatory signaling. In vivo 18 hours following infection with either pathogen, miR-21 was significantly reduced and PDCD4 increased in the lungs of wild type compared to IL-28R null mice. Infection of PDCD4 null mice with USA300 resulted in improved clearance, reduced pathology, and reduced inflammatory cytokine production. These data suggest that during bacterial pneumonia IFNλ promotes inflammation by inhibiting miR-21 regulation of PDCD4.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Citocinas/metabolismo , Pneumonia Estafilocócica/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Ligação a RNA/biossíntese , Mucosa Respiratória/metabolismo , Staphylococcus aureus/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Citocinas/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Pneumonia Estafilocócica/genética , Pneumonia Estafilocócica/patologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Proteínas de Ligação a RNA/genética , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Staphylococcus aureus/genética
11.
Clin Transl Immunology ; 13(6): e1517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873124

RESUMO

Objectives: The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates rapid methods for assessing monoclonal antibody (mAb) potency against emerging variants. Authentic virus neutralisation assays are considered the gold standard for measuring virus-neutralising antibody (nAb) titres in serum. However, authentic virus-based assays pose inherent practical challenges for measuring nAb titres against emerging SARS-CoV-2 variants (e.g. storing infectious viruses and testing at biosafety level-3 facilities). Here, we demonstrate the utility of pseudovirus neutralisation assay data in conjunction with serum mAb concentrations to robustly predict nAb titres in serum. Methods: SARS-CoV-2 nAb titres were determined via authentic- and lentiviral pseudovirus-based neutralisation assays using serological data from three AZD7442 (tixagevimab-cilgavimab) studies: PROVENT (NCT04625725), TACKLE (NCT04723394) and a phase 1 dose-ranging study (NCT04507256). AZD7442 serum concentrations were assessed using immunocapture. Serum-based half-maximal inhibitory concentration (IC50) values were derived from pseudovirus nAb titres and serum mAb concentrations, and compared with in vitro IC50 measurements. Results: nAb titres measured via authentic- and lentiviral pseudovirus-based neutralisation assays were strongly correlated for the ancestral SARS-CoV-2 virus and SARS-CoV-2 Alpha. Serum AZD7442 concentrations and pseudovirus nAb titres were strongly correlated for multiple SARS-CoV-2 variants with all Spearman correlation coefficients ≥ 0.78. Serum-based IC50 values were similar to in vitro IC50 values for AZD7442, for ancestral SARS-CoV-2 and Alpha, Delta, Omicron BA.2 and Omicron BA.4/5 variants. Conclusions: These data highlight that serum mAb concentrations and pseudovirus in vitro IC50 values can be used to rapidly predict nAb titres in serum for emerging and historical SARS-CoV-2 variants.

12.
Infect Dis Ther ; 13(3): 521-533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403865

RESUMO

INTRODUCTION: In the phase 3 TACKLE study, outpatient treatment with AZD7442 (tixagevimab/cilgavimab) was well tolerated and significantly reduced progression to severe disease or death through day 29 in adults with mild-to-moderate coronavirus disease 2019 (COVID-19) at the primary analysis. Here, we report data from the final analysis of the TACKLE study, performed after approximately 15 months' follow-up. METHODS: Eligible participants were randomized 1:1 and dosed within 7 days of symptom onset with 600 mg intramuscular AZD7442 (n = 456; 300 mg tixagevimab/300 mg cilgavimab) or placebo (n = 454). RESULTS: Severe COVID-19 or death through day 29 occurred in 4.4% and 8.8% of participants who received AZD7442 or placebo, a relative risk reduction (RRR) of 50.4% [95% confidence interval (CI) 14.4, 71.3; p = 0.0096]; among participants dosed within 5 days of symptom onset, the RRR was 66.9% (95% CI 31.1, 84.1; p = 0.002). Death from any cause or hospitalization for COVID-19 complications or sequelae through day 169 occurred in 5.0% of participants receiving AZD7442 versus 9.7% receiving placebo, an RRR of 49.2% (95% CI 14.7, 69.8; p = 0.009). Adverse events occurred in 55.5% and 55.9% of participants who received AZD7442 or placebo, respectively, and were mostly mild or moderate in severity. Serious adverse events occurred in 10.2% and 14.4% of participants who received AZD7442 or placebo, respectively, and deaths occurred in 1.8% of participants in both groups. Serum concentration-time profiles recorded over 457 days were similar for AZD7442, tixagevimab, and cilgavimab, and were consistent with the extended half-life reported for AZD7442 (approx. 90 days). CONCLUSIONS: AZD7442 reduced the risk of progression to severe COVID-19, hospitalization, and death, was well tolerated through 15 months, and exhibited predictable pharmacokinetics in outpatients with mild-to-moderate COVID-19. These data support the long-term safety of using long-acting monoclonal antibodies to treat COVID-19. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04723394. ( https://clinicaltrials.gov/study/NCT04723394 .


The body's immune system produces proteins called antibodies that specifically target foreign substances such as viruses. AZD7442 is a combination of two antibodies (called tixagevimab and cilgavimab) that bind to the severe acute respiratory syndrome coronavirus 2 virus spike protein, preventing it from causing coronavirus disease 2019 (COVID-19). AZD7442 was designed to be "long-acting" and therefore provide prolonged protection against COVID-19 lasting several months from a single dose. It was tested in a clinical trial (TACKLE) to see if it could prevent people who had recently developed symptoms of COVID-19 from getting sicker, being hospitalized, or dying. Around 900 adults took part in this clinical trial. Half of this group were treated with a dose of AZD7442, given as two injections. The other half received a placebo (injections that look like the AZD7442 injections but contain no medicine). The effect of AZD7442 treatment against COVID-19 was monitored over 6 months, and safety was monitored over 15 months. Around the same percentage of participants in the trial reported side effects with AZD7442 and placebo, suggesting there were no safety issues with AZD7442. AZD7442 treatment reduced the risk of participants getting severe COVID-19 or dying from COVID-19 by approximately half, compared with the placebo group. Participants receiving AZD7442 also had fewer hospitalizations due to COVID-19 complications, compared with the placebo group. These results showed the long-term safety of using long-acting antibodies such as AZD7442 as a treatment for COVID-19.

13.
Sci Transl Med ; 16(753): eado2817, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924429

RESUMO

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in variants that can escape neutralization by therapeutic antibodies. Here, we describe AZD3152, a SARS-CoV-2-neutralizing monoclonal antibody designed to provide improved potency and coverage against emerging variants. AZD3152 binds to the back left shoulder of the SARS-CoV-2 spike protein receptor binding domain and prevents interaction with the human angiotensin-converting enzyme 2 receptor. AZD3152 potently neutralized a broad panel of pseudovirus variants, including the currently dominant Omicron variant JN.1 but has reduced potency against XBB subvariants containing F456L. In vitro studies confirmed F456L resistance and additionally identified T415I and K458E as escape mutations. In a Syrian hamster challenge model, prophylactic administration of AZD3152 protected hamsters from weight loss and inflammation-related lung pathologies and reduced lung viral load. In the phase 1 sentinel safety cohort of the ongoing SUPERNOVA study (ClinicalTrials.gov: NCT05648110), a single 600-mg intramuscular injection of AZD5156 (containing 300 mg each of AZD3152 and cilgavimab) was well tolerated in adults through day 91. Observed serum concentrations of AZD3152 through day 91 were similar to those observed with cilgavimab and consistent with predictions for AZD7442, a SARS-CoV-2-neutralizing antibody combination of cilgavimab and tixagevimab, in a population pharmacokinetic model. On the basis of its pharmacokinetic characteristics, AZD3152 is predicted to provide durable protection against symptomatic coronavirus disease 2019 caused by susceptible SARS-CoV-2 variants, such as JN.1, in humans.


Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , SARS-CoV-2/efeitos dos fármacos , Humanos , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Cricetinae , Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacocinética , Mesocricetus , Feminino , Masculino , Adulto , Anticorpos Antivirais/imunologia , Mutação/genética , Anticorpos Monoclonais , Enzima de Conversão de Angiotensina 2/metabolismo , Carga Viral/efeitos dos fármacos
14.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166697, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37054999

RESUMO

AIMS: To determine if changes in polyamines metabolism occur during non-alcoholic steatohepatitis (NASH) in human patients and mice, as well as to assess systemic and liver-specific effects of spermidine administration into mice suffering from advanced NASH. MATERIALS AND METHODS: Human fecal samples were collected from 50 healthy and 50 NASH patients. For the preclinical studies C57Bl6/N male mice fed GAN or NIH-31 diet for 6 months were ordered from Taconic and liver biopsy was performed. Based on severity of liver fibrosis, body composition and body weight, the mice from both dietary groups were randomized into another two groups: half receiving 3 mM spermidine in drinking water, half normal water for subsequent 12 weeks. Body weight was measured weekly and glucose tolerance and body composition were assessed at the end. Blood and organs were collected during necropsy, and intrahepatic immune cells were isolated for flow cytometry analysis. RESULTS: Metabolomic analysis of human and murine feces confirmed that levels of polyamines decreased along NASH progression. Administration of exogenous spermidine to the mice from both dietary groups did not affect body weight, body composition or adiposity. Moreover, incidence of macroscopic hepatic lesions was higher in NASH mice receiving spermidine. On the other hand, spermidine normalized numbers of Kupffer cells in the livers of mice suffering from NASH, although these beneficial effects did not translate into improved liver steatosis or fibrosis severity. CONCLUSION: Levels of polyamines decrease during NASH in mice and human patients but spermidine administration does not improve advanced NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espermidina/farmacologia , Modelos Animais de Doenças , Poliaminas , Dieta Hiperlipídica , Peso Corporal , Suplementos Nutricionais
15.
Am J Respir Cell Mol Biol ; 46(1): 6-13, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21778412

RESUMO

The clinical manifestations of infection in cystic fibrosis (CF) are restricted to the lung, and involve a limited number of pathogens, suggesting a specific defect in mucosal immunity. We postulated that cystic fibrosis transmembrane conductance regulator (CTFR) mutations could affect the activation of type I interferon signaling in airway epithelial cells, which function in immune surveillance and initiate the recruitment and activation of immune cells. In response to infection with Pseudomonas aeruginosa, Ifnb was induced more than 100-fold in the murine lung, and the phosphorylation of STAT1 was similarly induced by the expected TLR4/TRIF/MD2/TBK1 cascade. The stimulation by P. aeruginosa of CF (IB3) cells and control (C-38) human cell lines similarly resulted in the induction of IFN-ß, but to a significantly lower extent in CF airway cells. The potential consequences of diminished type I IFN signaling were demonstrated in a murine model of P. aeruginosa pneumonia, pretreatment with polyinosinic:polycytidylic acid significantly enhanced bacterial clearance and correlated with increased numbers of mature CD11c(+)/CD86(+) dendritic cells (DCs) in the lung. Using culture supernatants from CF or control cell lines stimulated with P. aeruginosa, we similarly demonstrated the diminished activation of human monocyte-derived DCs by incubation with CF compared with normal epithelial cell culture supernatants, which was dependent on IFN-ß. These observations suggest that dysfunction of the CFTR in airway epithelial cells may contribute to impaired immune surveillance in the CF airway and resultant colonization by P. aeruginosa.


Assuntos
Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Interferon Tipo I/metabolismo , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Antígeno CD11c/imunologia , Antígeno CD11c/metabolismo , Células Cultivadas , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Epiteliais/patologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon beta/genética , Interferon beta/imunologia , Antígeno 96 de Linfócito/imunologia , Antígeno 96 de Linfócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosforilação , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/patologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
16.
J Biol Chem ; 286(41): 35891-35898, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21878647

RESUMO

Staphyococcus aureus and especially the epidemic methicillin-resistant S. aureus strains cause severe necrotizing pneumonia. The mechanisms whereby these organisms invade across the mucosal epithelial barrier to initiate invasive infection are not well understood. Protein A (SpA), a highly conserved and abundant surface protein of S. aureus, activates TNF receptor 1 and EGF receptor (EGFR) signaling cascades that can perturb the cytoskeleton. We demonstrate that wild-type S. aureus, but not spa mutants, invade across polarized airway epithelial cell monolayers via the paracellular junctions. SpA stimulated a RhoA/ROCK/MLC cascade, resulting in the contraction of the cytoskeleton. SpA(+) but not SpA(-) mutants stimulated activation of EGFR and along with subsequent calpain activity cleaved the membrane-spanning junctional proteins occludin and E-cadherin, facilitating staphylococcal transmigration through the cell-cell junctions. Treatment of polarized human airway epithelial monolayers with inhibitors of ROCK, EGFR, MAPKs, or calpain prevented staphylococcal penetration through the monolayers. In vivo, blocking calpain activity impeded bacterial invasion into the lung parenchyma. Thus, S. aureus exploits multiple receptors available on the airway mucosal surface to facilitate invasion across epithelial barriers.


Assuntos
Pneumonia Estafilocócica/metabolismo , Mucosa Respiratória/metabolismo , Transdução de Sinais , Proteína Estafilocócica A/metabolismo , Staphylococcus aureus/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Calpaína/antagonistas & inibidores , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Camundongos , Mutação , Pneumonia Estafilocócica/tratamento farmacológico , Pneumonia Estafilocócica/genética , Inibidores de Proteases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Mucosa Respiratória/microbiologia , Proteína Estafilocócica A/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Proteínas rho de Ligação ao GTP/genética , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética
17.
Front Immunol ; 13: 1029085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532044

RESUMO

Resident macrophages play a unique role in the maintenance of tissue function. As phagocytes, they are an essential first line defenders against pathogens and much of the initial characterization of these cells was focused on their interaction with viral and bacterial pathogens. However, these cells are increasingly recognized as contributing to more than just host defense. Through cytokine production, receptor engagement and gap junction communication resident macrophages tune tissue inflammatory tone, influence adaptive immune cell phenotype and regulate tissue structure and function. This review highlights resident macrophages in the liver and lung as they hold unique roles in the maintenance of the interface between the circulatory system and the external environment. As such, we detail the developmental origin of these cells, their contribution to host defense and the array of tools these cells use to regulate tissue homeostasis.


Assuntos
Fígado , Macrófagos , Pulmão , Fagócitos , Homeostase
18.
Sci Rep ; 12(1): 7961, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562373

RESUMO

Rare cases of thrombosis with thrombocytopenia syndrome (TTS) have been reported after AZD1222. Anti-platelet factor-4 (PF4) antibodies were observed in patients following presentation of TTS, however it is unclear if AZD1222 was responsible for inducing production of anti-PF4. Paired samples (baseline and day-15) from a phase 3 trial of AZD1222 vs placebo were analyzed for anti-PF4 levels; 19/1727 (1.1%, AZD1222) vs 7/857 (0.8%, placebo) participants were anti-PF4-IgG-negative at baseline but had moderate Day-15 levels (P = 0.676) and 0/35 and 1/20 (5.0%) had moderate levels at baseline but high Day-15 levels. These data indicate that AZD1222 does not induce a clinically relevant general increase in anti-PF4 IgG.


Assuntos
COVID-19 , Trombocitopenia , Trombose , ChAdOx1 nCoV-19 , Humanos , Imunoglobulina G , Fatores Imunológicos , Fator Plaquetário 4 , Trombocitopenia/etiologia , Vacinação
19.
Front Immunol ; 13: 836492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493482

RESUMO

Severe COVID-19 can be associated with a prothrombotic state, increasing risk of morbidity and mortality. The SARS-CoV-2 spike glycoprotein is purported to directly promote platelet activation via the S1 subunit and is cleaved from host cells during infection. High plasma concentrations of S1 subunit are associated with disease progression and respiratory failure during severe COVID-19. There is limited evidence on whether COVID-19 vaccine-induced spike protein is similarly cleaved and on the immediate effects of vaccination on host immune responses or hematology parameters. We investigated vaccine-induced S1 subunit cleavage and effects on hematology parameters using AZD1222 (ChAdOx1 nCoV-19), a simian, replication-deficient adenovirus-vectored COVID-19 vaccine. We observed S1 subunit cleavage in vitro following AZD1222 transduction of HEK293x cells. S1 subunit cleavage also occurred in vivo and was detectable in sera 12 hours post intramuscular immunization (1x1010 viral particles) in CD-1 mice. Soluble S1 protein levels decreased within 3 days and were no longer detectable 7-14 days post immunization. Intravenous immunization (1x109 viral particles) produced higher soluble S1 protein levels with similar expression kinetics. Spike protein was undetectable by immunohistochemistry 14 days post intramuscular immunization. Intramuscular immunization resulted in transiently lower platelet (12 hours) and white blood cell (12-24 hours) counts relative to vehicle. Similarly, intravenous immunization resulted in lower platelet (24-72 hours) and white blood cell (12-24 hours) counts, and increased neutrophil (2 hours) counts. The responses observed with either route of immunization represent transient hematologic changes and correspond to expected innate immune responses to adenoviral infection.


Assuntos
COVID-19 , Hematologia , Vacinas Virais , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
20.
Cytokine ; 54(3): 235-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21420877

RESUMO

BACKGROUND: Gelsolin is an actin-binding protein found in the cytoplasm and in extracellular fluids including blood plasma. Plasma gelsolin concentration decreases after a wide range of injuries. We hypothesized that the repletion of gelsolin would limit inflammation and tissue injury in a rat model of sepsis using cecal ligation and double puncture (2CLP). METHODS: Human plasma gelsolin (pGSN, 10mg in 1ml saline) was administered once immediately following surgery, and control 2CLP (2CLP Alb) and sham animals were injected with 1ml saline containing equimolar albumin. Treatments were administered intraperitoneally (IP), intravenously (IV), or subcutaneously (SC). RESULTS: Gelsolin levels in the 2CLP Alb group were lower than in sham animals. Administration of pGSN increased levels when administered IV and SC, but not IP. Morbidity scores were significantly less severe in the 2CLP pGSN group than in the 2CLP Alb group when pGSN was administered IV and SC, but not IP. Furthermore, enzymatic activity indicative of tissue damage (lactate dehydrogenase and alanine transaminase) was significantly lower in 2CLP pGSN group when treated SC compared to 2CLP Alb group. CONCLUSION: These data provide further evidence that exogenous gelsolin can reduce morbidity from sepsis.


Assuntos
Gelsolina/administração & dosagem , Gelsolina/sangue , Sepse/tratamento farmacológico , Alanina Transaminase/metabolismo , Animais , Citocinas/biossíntese , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação , Infusões Intravenosas , Infusões Parenterais , L-Lactato Desidrogenase/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA