RESUMO
A combination of density functional theory (DFT) calculations and microkinetic simulations is applied to the study of condensation between N-acyl-hydrazides and aldehydes in acidic media to produce the active pharmaceutical ingredients (API) nitrofurantoin and dantrolene. Previous experimental reports have shown that the use of ball milling conditions leads to a reduction in the reaction time, which is associated with a significant reduction of waste. This result is reproduced by the current calculations, which additionally provide a detailed mechanistic explanation for this behavior.
RESUMO
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry.
RESUMO
In recent years, mechanochemistry has enriched the toolbox of synthetic chemists, enabling faster and more sustainable access to new materials and existing products, including active pharmaceutical ingredients (APIs). However, molecular-level understanding of most mechanochemical reactions remains limited, delaying the implementation of mechanochemistry in industrial applications. Herein, we have applied inâ situ monitoring by Raman spectroscopy to the mechanosynthesis of phenytoin, a World Health Organization (WHO) Essential Medicine, enabling the observation, isolation, and characterization of key molecular-migration intermediates involved in the single-step transformation of benzil, urea, and KOH into phenytoin. This work contributes to the elucidation of a reaction mechanism that has been subjected to a number of interpretations over time and paints a clear picture of how mechanosynthesis can be applied and optimized for the preparation of added-value molecules.
Assuntos
Fenitoína , Análise Espectral Raman , Organização Mundial da SaúdeRESUMO
Molecular rearrangements are a powerful tool for constructing complex structures in an atom- and step-economic manner, translating multistep transformations into an intrinsically more sustainable process. Mechanochemical molecular rearrangements become an even more appealing eco-friendly synthetic approach, especially for preparing active pharmaceutical ingredients (APIs) and natural products. Still in their infancy, rearrangements promoted by mechanochemistry represent a promising approach for chemists to merge molecular diversity and green chemistry perspectives toward more selective and efficient syntheses with a reduced environmental footprint.
Assuntos
Produtos BiológicosRESUMO
The use of mechanical forces to activate and drive chemical transformations in solid particulate is attracting remarkable interest in the light of its promising application in a wide spectrum of strategic areas ranging from materials science to fine chemical synthesis and pharmaceutical ingredient production. The capability of enabling solventless processes and fabricating unique materials inaccessible otherwise has made mechanochemistry one of the ten chemical innovations with the highest potential of changing the world. As in the past, so again now, the development of reliable technologies based on mechanochemical transformations cannot be separated from the understanding of the underlying mechanisms, their description and their control. To this aim, in this work we propose a kinetic model that relates macroscopic and microscopic scales while accounting for the statistical nature of the mechanical processing of powder. We discuss several specific case studies and develop the pertinent kinetic equations, showing how they can be used to best fit the experimental data and obtain insight into the microscopic features of mechanical activation.
RESUMO
The review highlights the hydantoin syntheses presented from the point of view of the preparation methods. Novel synthetic routes to various hydantoin structures, the advances brought to the classical methods in the aim of producing more sustainable and environmentally friendly procedures for the preparation of these biomolecules, and a critical comparison of the different synthetic approaches developed in the last twelve years are also described. The review is composed of 95 schemes, 8 figures and 528 references for the last 12 years and includes the description of the hydantoin-based marketed drugs and clinical candidates.
RESUMO
Aimed at eliminating or at least significantly reducing the use of solvents, sodium hypochlorite pentahydrate crystals (NaOCl·5H2O) in the presence of a catalytic amount of a nitrosyl radical (TEMPO or AZADO) have been successfully used to induce mechanochemical oxidative processes on several structurally different primary and secondary alcohols. The proposed redox process is safe, inexpensive and performing effectively, especially on the macroscale. Herein, an Ertalyte® jar has been successfully used, for the first time, in a mechanochemical process.
RESUMO
The present work focuses on the mechanochemical preparation of industrially important ß-cyclodextrin (CD) derivatives. Activated CDs have been reacted with nitrogen and sulfur nucleophiles using a planetary mill equipped with stainless steel, zirconia and glass milling tools of different sizes. It is shown that the milling frequency and the number as well as the size of the milling balls have an effect on the nucleophilic reaction.
RESUMO
The present work addresses the development of an eco-friendly and cost-efficient protocol for the oxidation of primary and secondary alcohols to the corresponding aldehydes and ketones by mechanical processing under air. Ball milling was shown to promote the quantitative conversion of a broad set of alcohols into carbonyl compounds with no trace of an over-oxidation to carboxylic acids. The mechanochemical reaction exhibited higher yields and rates than the classical, homogeneous, TEMPO-based oxidation.
RESUMO
The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures.
RESUMO
5-Substituted-3-(alkoxycarbonyl)alkyl-hydantoin derivatives were prepared by mechanochemistry from amino esters or dipeptides, via a 1,1'-carbonyldiimidazole-mediated one-pot/two-step cyclization reaction involving amino acid unsymmetrical urea A and carboxy-imidazolyl-dipeptide ester B intermediates. Comparative experiments in solution were also performed. The successful preparation of an antibacterial agent precursor was also investigated.
RESUMO
Mechanochemical derivatizations of N- or C-protected amino acids were performed in a ball mill under solvent-free conditions. A vibrational ball mill was used for the preparation of N-protected α- and ß-amino esters starting from the corresponding N-unmasked precursors via a carbamoylation reaction in the presence of di-tert-butyl dicarbonate (Boc2O), benzyl chloroformate (Z-Cl) or 9-fluorenylmethoxycarbonyl chloroformate (Fmoc-Cl). A planetary ball mill proved to be more suitable for the synthesis of amino esters from N-protected amino acids via a one-pot activation/esterification reaction in the presence of various dialkyl dicarbonates or chloroformates. The spot-to-spot reactions were straightforward, leading to the final products in reduced reaction times with improved yields and simplified work-up procedures.
Assuntos
Aminoácidos/síntese química , Ésteres/síntese química , Aminoácidos/química , Ésteres/química , Conformação Molecular , Solventes/químicaRESUMO
The eco-friendly preparation of 5- and 5,5-disubstituted hydantoins from various amino ester hydrochlorides and potassium cyanate in a planetary ball-mill is described. The one-pot/two-step protocol consisted in the formation of ureido ester intermediates, followed by a base-catalyzed cyclization to hydantoins. This easy-handling mechanochemical methodology was applied to a large variety of α- and ß-amino esters, in smooth conditions, leading to hydantoins in good yields and with no need of purification steps. As an example, the methodology was applied to the "green" synthesis of the antiepileptic drug Phenytoin, with no use of any harmful organic solvent.
Assuntos
Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Fenitoína/química , Fenitoína/síntese química , Anticonvulsivantes/química , Ciclização , Ésteres , Hidantoínas/síntese química , Hidantoínas/química , Estrutura Molecular , SolventesRESUMO
To address the growing demand for more sustainable and greener chemistry, mechanochemical methodologies are emerging as key players. However, to date there has been little data highlighting the benefits of these rising mechanochemical technologies with regard to process scale-up activities or implementation in commercial production scale. Herein, we report the first application of bead-mill technology (Dyno®-mill) for the sustainable mechanochemical synthesis of Acetaminophen, known under the brand name Paracetamol. Using the Beckmann rearrangement, the optimized solvent-free methodology delivered a final product on a scale of several tens of grams. In comparison to current production solvent-based process, the proposed process achieves a higher yield while also allowing the removal of solvents in the chemical reaction, hereby reducing one of the extensive drivers to waste generation. The mechanochemical approach was compared to solvent-based process using a combination of green metrics and EcoScale score. The mechanochemical synthesis of paracetamol scores the highest for all the metrics over currently used solution-based processes.
RESUMO
The development of mechanochemistry is considerably growing. Benign by design, this technology complies with several principles of green chemistry, contributing to the achievement of the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal objectives. Herein, we report the use of mechanochemical processes in batch to prepare kilogram-scale of the Active Pharmaceutical Ingredient (API): Ibuprofen-Nicotinamide (rac-IBP:NCT) co-crystal in an industrial eccentric vibration mill. This scenario shows a sustainable approach to the industrial up-scaling of pharmaceutical co-crystals by a solvent-free mechanochemical process in batch. The quantitative assessment of the greenness of the mechanochemical process against the Twelve Principles of Green Chemistry was performed using the DOZN 2.0 Green Chemistry Evaluator.
Assuntos
Química Farmacêutica , Ibuprofeno , Solventes/química , Ibuprofeno/química , Preparações FarmacêuticasRESUMO
Design for diversity: A new catalytic system based on PEG-3400 and a metal salt (Pt or Au) was designed to efficiently perform a cycloisomerization reaction under microwave irradiation, which gave diverse heterocycles in good to excellent yields, after a precipitation/filtration procedure (see scheme).
Assuntos
Ouro/química , Nanopartículas Metálicas/química , Platina/química , Polietilenoglicóis/química , Catálise , Ciclização , Isomerismo , Polietilenoglicóis/síntese químicaRESUMO
The unprecedented eco-friendly Pt-catalyzed 5-endo-dig cycloisomerization of readily available α-amino ynones is reported under microwave irradiation in PEG-3400 as reaction matrix. The corresponding pure pyrrolin-4-ones were obtained in excellent yields (80-98%) directly after a straightforward precipitation-filtration workup, thus avoiding any chromatographic purification. The catalytic system was recycled and the chiral purity of all the products was also investigated.
Assuntos
Platina/química , Polietilenoglicóis/química , Pirróis/química , Pirróis/síntese química , Catálise , Técnicas de Química Combinatória , Ciclização , Micro-Ondas , EstereoisomerismoRESUMO
There is still a need for synthetic approaches that are much faster, easier to scale up, more robust and efficient for generating gold(I)-thiolates that can be easily converted into gold-thiolate nanoclusters. Mechanochemical methods can offer significantly reduced reaction times, increased yields and straightforward recovery of the product, compared to the solution-based reactions. For the first time, a new simple, rapid and efficient mechanochemical redox method in a ball-mill was developed to produce the highly luminescent, pH-responsive Au(I)-glutathionate, [Au(SG)]n. The efficient productivity of the mechanochemical redox reaction afforded orange luminescent [Au(SG)]n in isolable amounts (mg scale), usually not achieved by more conventional methods in solution. Then, ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters were prepared by pH-triggered dissociation of [Au(SG)]n. The pH-stimulated dissociation of the Au(I)-glutathionate complex provides a time-efficient synthesis of oligomeric Au10-12(SG)10-12 nanoclusters, it avoids high-temperature heating or the addition of harmful reducing agent (e.g., carbon monoxide). Therefore, we present herein a new and eco-friendly methodology to access oligomeric glutathione-based gold nanoclusters, already finding applications in biomedical field as efficient radiosensitizers in cancer radiotherapy.
RESUMO
Underwater exploration: The ring-closing metathesis of N,N-diallyltosylamine (DATs) and diallyldiethyl malonate has been studied in aqueous micellar medium, at room temperature, in the presence of four different gemini cationic surfactants and various ruthenium catalysts. For the first time, the adsorption mechanisms and the reaction steps involved in this heterogeneous catalytic process were elucidated.
Assuntos
Micelas , Compostos Organometálicos/química , Rutênio/química , Água/química , Alcenos/química , Catálise , Ciclização , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Tensoativos/químicaRESUMO
The unprecedented electrophilic iodo-mediated cyclization of α-amino-ynones afforded enantiomerically enriched ß-iodopyrrolin-4-ones in excellent yields under mild conditions. The starting substituted α-amino-ynones were obtained from the chiral pool by selective mono-addition of an organolithium to optically pure N-protected carboxyanhydrides of amino acids (UNCAs).