Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(3): E348-57, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729876

RESUMO

Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1-ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. We overcame this impediment using medium supplemented with various iron complexes to recover mutants with deletions encompassing select genes within esx-3 or the entire operon. The esx-3 mutants were defective in uptake of siderophore-bound iron and dramatically accumulated cell-associated mycobactin siderophores. Proteomic analyses of culture filtrate revealed that secretion of EsxG and EsxH was codependent and that EsxG-EsxH also facilitated secretion of several members of the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) protein families (named for conserved PE and PPE N-terminal motifs). Substrates that depended on EsxG-EsxH for secretion included PE5, encoded within the esx-3 locus, and the evolutionarily related PE15-PPE20 encoded outside the esx-3 locus. In vivo characterization of the mutants unexpectedly showed that the ESX-3 secretion system plays both iron-dependent and -independent roles in Mtb pathogenesis. PE5-PPE4 was found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3. The importance of this iron-acquisition function was dependent upon host genotype, suggesting a role for ESX-3 secretion in counteracting host defense mechanisms that restrict iron availability. Further, we demonstrate that the ESX-3 T7SS secretes certain effectors that are important for iron uptake while additional secreted effectors modulate virulence in an iron-independent fashion.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Aerossóis , Animais , Polaridade Celular/efeitos dos fármacos , Genótipo , Hemina/farmacologia , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Ferro/farmacologia , Macrófagos/citologia , Macrófagos/microbiologia , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Mutação/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oxazóis/metabolismo , Fenótipo , Proteômica , Sideróforos/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Virulência/efeitos dos fármacos
2.
mBio ; 6(6): e01313-15, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578674

RESUMO

UNLABELLED: Mycobacterium haemophilum is an emerging pathogen associated with a variety of clinical syndromes, most commonly skin infections in immunocompromised individuals. M. haemophilum exhibits a unique requirement for iron supplementation to support its growth in culture, but the basis for this property and how it may shape pathogenesis is unclear. Using a combination of Illumina, PacBio, and Sanger sequencing, the complete genome sequence of M. haemophilum was determined. Guided by this sequence, experiments were performed to define the basis for the unique growth requirements of M. haemophilum. We found that M. haemophilum, unlike many other mycobacteria, is unable to synthesize iron-binding siderophores known as mycobactins or to utilize ferri-mycobactins to support growth. These differences correlate with the absence of genes associated with mycobactin synthesis, secretion, and uptake. In agreement with the ability of heme to promote growth, we identified genes encoding heme uptake machinery. Consistent with its propensity to infect the skin, we show at the whole-genome level the genetic closeness of M. haemophilum with Mycobacterium leprae, an organism which cannot be cultivated in vitro, and we identify genes uniquely shared by these organisms. Finally, we identify means to express foreign genes in M. haemophilum. These data explain the unique culture requirements for this important pathogen, provide a foundation upon which the genome sequence can be exploited to improve diagnostics and therapeutics, and suggest use of M. haemophilum as a tool to elucidate functions of genes shared with M. leprae. IMPORTANCE: Mycobacterium haemophilum is an emerging pathogen with an unknown natural reservoir that exhibits unique requirements for iron supplementation to grow in vitro. Understanding the basis for this iron requirement is important because it is fundamental to isolation of the organism from clinical samples and environmental sources. Defining the molecular basis for M. haemophilium's growth requirements will also shed new light on mycobacterial strategies to acquire iron and can be exploited to define how differences in such strategies influence pathogenesis. Here, through a combination of sequencing and experimental approaches, we explain the basis for the iron requirement. We further demonstrate the genetic closeness of M. haemophilum and Mycobacterium leprae, the causative agent of leprosy which cannot be cultured in vitro, and we demonstrate methods to genetically manipulate M. haemophilum. These findings pave the way for the use of M. haemophilum as a model to elucidate functions of genes shared with M. leprae.


Assuntos
Meios de Cultura/química , Genoma Bacteriano , Mycobacterium haemophilum/crescimento & desenvolvimento , Mycobacterium haemophilum/genética , Sequência de Bases , Heme/genética , Heme/metabolismo , Hemoglobinas/metabolismo , Humanos , Ferro/metabolismo , Mycobacterium leprae/genética , Oxazóis/metabolismo , Fenótipo , Análise de Sequência de DNA
3.
mBio ; 5(3): e01179-14, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24865558

RESUMO

UNLABELLED: G: enetic engineering has contributed greatly to our understanding of Mycobacterium tuberculosis biology and has facilitated antimycobacterial and vaccine development. However, methods to generate M. tuberculosis deletion mutants remain labor-intensive and relatively inefficient. Here, methods are described that significantly enhance the efficiency (greater than 100-fold) of recovering deletion mutants by the expression of mycobacteriophage recombineering functions during the course of infection with specialized transducing phages delivering allelic exchange substrates. This system has been successfully applied to the CDC1551 strain of M. tuberculosis, as well as to a ΔrecD mutant generated in the CDC1551 parental strain. The latter studies were undertaken as there were precedents in both the Escherichia coli literature and mycobacterial literature for enhancement of homologous recombination in strains lacking RecD. In combination, these measures yielded a dramatic increase in the recovery of deletion mutants and are expected to facilitate construction of a comprehensive library of mutants with every nonessential gene of M. tuberculosis deleted. The findings also open up the potential for sophisticated genetic screens, such as synthetic lethal analyses, which have so far not been feasible for the slow-growing mycobacteria. IMPORTANCE: Genetic manipulation of M. tuberculosis is hampered by laborious and relatively inefficient methods for generating deletion mutant strains. The combined use of phage-based transduction and recombineering methods greatly enhances the efficiency by which knockout strains can be generated. The additional elimination of recD further enhances this efficiency. The methods described herein will facilitate the construction of comprehensive gene knockout libraries and expedite the isolation of previously difficult to recover mutants, promoting antimicrobial and vaccine development.


Assuntos
Engenharia Genética , Micobacteriófagos/fisiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/virologia , Transdução Genética , Alelos , Regulação Bacteriana da Expressão Gênica , Loci Gênicos , Mutação , Plasmídeos/genética , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA