Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982814

RESUMO

In the clinic, the death certificate is issued if brain electrical activity is no longer detectable. However, recent research has shown that in model organisms and humans, gene activity continues for at least 96 h postmortem. The discovery that many genes are still working up to 48 h after death questions our definition of death and has implications for organ transplants and forensics. If genes can be active up to 48 h after death, is the person technically still alive at that point? We discovered a very interesting parallel between genes that were upregulated in the brain after death and genes upregulated in the brains that were subjected to medically-induced coma, including transcripts involved in neurotransmission, proteasomal degradation, apoptosis, inflammation, and most interestingly, cancer. Since these genes are involved in cellular proliferation, their activation after death could represent the cellular reaction to escape mortality and raises the question of organ viability and genetics used for transplantation after death. One factor limiting the organ availability for transplantation is religious belief. However, more recently, organ donation for the benefit of humans in need has been seen as "posthumous giving of organs and tissues can be a manifestation of love spreading also to the other side of death".


Assuntos
Transplante de Órgãos , Obtenção de Tecidos e Órgãos , Humanos , Coma/genética , Transplante de Órgãos/efeitos adversos , Encéfalo , Autopsia , Doadores de Tecidos
2.
Curr Issues Mol Biol ; 44(10): 4902-4920, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36286048

RESUMO

The available evidence suggests that affective disorders, such as depression and anxiety, increase risk for accelerated cognitive decline and late-life dementia in aging individuals. Behavioral neuropsychology studies also showed that cognitive decline is a central feature of aging impacting the quality of life. Motor deficits are common after traumatic brain injuries and stroke, affect subjective well-being, and are linked with reduced quality of life. Currently, restorative therapies that target the brain directly to restore cognitive and motor tasks in aging and disease are available. However, the very same drugs used for therapeutic purposes are employed by athletes as stimulants either to increase performance for fame and financial rewards or as recreational drugs. Unfortunately, most of these drugs have severe side effects and pose a serious threat to the health of athletes. The use of performance-enhancing drugs by children and teenagers has increased tremendously due to the decrease in the age of players in competitive sports and the availability of various stimulants in many forms and shapes. Thus, doping may cause serious health-threatening conditions including, infertility, subdural hematomas, liver and kidney dysfunction, peripheral edema, cardiac hypertrophy, myocardial ischemia, thrombosis, and cardiovascular disease. In this review, we focus on the impact of doping on psychopathological disorders, cognition, and depression. Occasionally, we also refer to chronic use of therapeutic drugs to increase physical performance and highlight the underlying mechanisms. We conclude that raising awareness on the health risks of doping in sport for all shall promote an increased awareness for healthy lifestyles across all generations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA