Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.892
Filtrar
1.
Immunity ; 55(9): 1725-1731.e4, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35973428

RESUMO

Large-scale vaccination campaigns have prevented countless hospitalizations and deaths due to COVID-19. However, the emergence of SARS-CoV-2 variants that escape from immunity challenges the effectiveness of current vaccines. Given this continuing evolution, an important question is when and how to update SARS-CoV-2 vaccines to antigenically match circulating variants, similarly to seasonal influenza viruses where antigenic drift necessitates periodic vaccine updates. Here, we studied SARS-CoV-2 antigenic drift by assessing neutralizing activity against variants of concern (VOCs) in a set of sera from patients infected with viral sequence-confirmed VOCs. Infections with D614G or Alpha strains induced the broadest immunity, whereas individuals infected with other VOCs had more strain-specific responses. Omicron BA.1 and BA.2 were substantially resistant to neutralization by sera elicited by all other variants. Antigenic cartography revealed that Omicron BA.1 and BA.2 were antigenically most distinct from D614G, associated with immune escape, and possibly will require vaccine updates to ensure vaccine effectiveness.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Virais/genética , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética
2.
Immunity ; 54(12): 2772-2783.e5, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34788602

RESUMO

Humoral immunity is essential for protection against pathogens, emphasized by the prevention of 2-3 million deaths worldwide annually by childhood immunizations. Long-term protective immunity is dependent on the continual production of neutralizing antibodies by the subset of long-lived plasma cells (LLPCs). LLPCs are not intrinsically long-lived, but require interaction with LLPC niche stromal cells for survival. However, it remains unclear which and how these interactions sustain LLPC survival and long-term humoral immunity. We now have found that the immunosuppressive enzyme indoleamine 2,3- dioxygenase 1 (IDO1) is required to sustain antibody responses and LLPC survival. Activation of IDO1 occurs upon the engagement of CD80/CD86 on the niche dendritic cells by CD28 on LLPC. Kynurenine, the product of IDO1 catabolism, activates the aryl hydrocarbon receptor in LLPC, reinforcing CD28 expression and survival signaling. These findings expand the immune function of IDO1 and uncover a novel pathway for sustaining LLPC survival and humoral immunity.


Assuntos
Células Dendríticas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Plasmócitos/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Antígeno B7-1/metabolismo , Antígenos CD28/metabolismo , Autorrenovação Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Imunidade Humoral , Memória Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , Camundongos Knockout
3.
Nature ; 630(8017): 744-751, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867042

RESUMO

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA , DNA , Mutagênese , Mutação , Animais , Humanos , Camundongos , Alquilação/efeitos da radiação , Linhagem Celular , DNA/química , DNA/genética , DNA/metabolismo , DNA/efeitos da radiação , Adutos de DNA/química , Adutos de DNA/genética , Adutos de DNA/metabolismo , Adutos de DNA/efeitos da radiação , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênese/genética , Mutagênese/efeitos da radiação , Mutação/genética , Mutação/efeitos da radiação , Neoplasias/genética , Transcrição Gênica , Raios Ultravioleta/efeitos adversos
4.
Am J Hum Genet ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39168121

RESUMO

Polygenic risk scores (PRSs) are an important tool for understanding the role of common genetic variants in human disease. Standard best practices recommend that PRSs be analyzed in cohorts that are independent of the genome-wide association study (GWAS) used to derive the scores without sample overlap or relatedness between the two cohorts. However, identifying sample overlap and relatedness can be challenging in an era of GWASs performed by large biobanks and international research consortia. Although most genomics researchers are aware of best practices and theoretical concerns about sample overlap and relatedness between GWAS and PRS cohorts, the prevailing assumption is that the risk of bias is small for very large GWASs. Here, we present two real-world examples demonstrating that sample overlap and relatedness is not a minor or theoretical concern but an important potential source of bias in PRS studies. Using a recently developed statistical adjustment tool, we found that excluding overlapping and related samples was equal to or more powerful than adjusting for overlap bias. Our goal is to make genomics researchers aware of the magnitude of risk of bias from sample overlap and relatedness and to highlight the need for mitigation tools, including independent validation cohorts in PRS studies, continued development of statistical adjustment methods, and tools for researchers to test their cohorts for overlap and relatedness with GWAS cohorts without sharing individual-level data.

5.
Nature ; 589(7843): 567-571, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33505035

RESUMO

Overfishing is the primary cause of marine defaunation, yet declines in and increasing extinction risks of individual species are difficult to measure, particularly for the largest predators found in the high seas1-3. Here we calculate two well-established indicators to track progress towards Aichi Biodiversity Targets and Sustainable Development Goals4,5: the Living Planet Index (a measure of changes in abundance aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray species) and the Red List Index (a measure of change in extinction risk calculated for all 31 oceanic species of sharks and rays). We find that, since 1970, the global abundance of oceanic sharks and rays has declined by 71% owing to an 18-fold increase in relative fishing pressure. This depletion has increased the global extinction risk to the point at which three-quarters of the species comprising this functionally important assemblage are threatened with extinction. Strict prohibitions and precautionary science-based catch limits are urgently needed to avert population collapse6,7, avoid the disruption of ecological functions and promote species recovery8,9.


Assuntos
Organismos Aquáticos/isolamento & purificação , Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção/estatística & dados numéricos , Oceanos e Mares , Tubarões , Rajidae , Animais , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Feminino , Peixes , Cadeia Alimentar , Objetivos , História do Século XX , História do Século XXI , Dinâmica Populacional/estatística & dados numéricos , Comportamento Predatório , Medição de Risco , Desenvolvimento Sustentável
6.
Proc Natl Acad Sci U S A ; 121(35): e2406787121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163337

RESUMO

Muscle stem cells (MuSCs) are specialized cells that reside in adult skeletal muscle poised to repair muscle tissue. The ability of MuSCs to regenerate damaged tissues declines markedly with aging and in diseases such as Duchenne muscular dystrophy, but the underlying causes of MuSC dysfunction remain poorly understood. Both aging and disease result in dramatic increases in the stiffness of the muscle tissue microenvironment from fibrosis. MuSCs are known to lose their regenerative potential if cultured on stiff plastic substrates. We sought to determine whether MuSCs harbor a memory of their past microenvironment and if it can be overcome. We tested MuSCs in situ using dynamic hydrogel biomaterials that soften or stiffen on demand in response to light and found that freshly isolated MuSCs develop a persistent memory of substrate stiffness characterized by loss of proliferative progenitors within the first three days of culture on stiff substrates. MuSCs cultured on soft hydrogels had altered cytoskeletal organization and activity of Rho and Rac guanosine triphosphate hydrolase (GTPase) and Yes-associated protein mechanotransduction pathways compared to those on stiff hydrogels. Pharmacologic inhibition identified RhoA activation as responsible for the mechanical memory phenotype, and single-cell RNA sequencing revealed a molecular signature of the mechanical memory. These studies highlight that microenvironmental stiffness regulates MuSC fate and leads to MuSC dysfunction that is not readily reversed by changing stiffness. Our results suggest that stiffness can be circumvented by targeting downstream signaling pathways to overcome stem cell dysfunction in aged and disease states with aberrant fibrotic tissue mechanics.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Músculo Esquelético , Animais , Hidrogéis/química , Materiais Biocompatíveis/química , Músculo Esquelético/metabolismo , Camundongos , Mecanotransdução Celular , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas
7.
Cell ; 146(5): 678-81, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21884930

RESUMO

A recent series of papers, including Festa et al. (2011) in this issue, has revealed unexpected interdependent relationships among cell populations residing in and around the hair follicle. These interactions between different lineages of stem cells are crucial for hair follicle growth and cycling and point to a complex crosstalk in stem cell niches.


Assuntos
Adipócitos/citologia , Folículo Piloso/citologia , Pele/citologia , Células-Tronco/citologia , Animais , Feminino , Humanos , Masculino
8.
Nature ; 583(7815): 265-270, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581361

RESUMO

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.


Assuntos
Segregação de Cromossomos/genética , Evolução Molecular , Genoma/genética , Neoplasias/genética , Alelos , Animais , Reparo do DNA , Replicação do DNA , Receptores ErbB/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Mutação , Neoplasias/patologia , Seleção Genética , Transdução de Sinais , Troca de Cromátide Irmã , Transcrição Gênica , Quinases raf/metabolismo , Proteínas ras/metabolismo
10.
Nature ; 583(7818): 801-806, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699418

RESUMO

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Recifes de Corais , Ecossistema , Pesqueiros/economia , Pesqueiros/estatística & dados numéricos , Tubarões/fisiologia , Animais , Mapeamento Geográfico , Densidade Demográfica , Fatores Socioeconômicos
11.
Mol Cell ; 71(4): 606-620.e7, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30118680

RESUMO

Metformin has been reported to possess antitumor activity and maintain high cytotoxic T lymphocyte (CTL) immune surveillance. However, the functions and detailed mechanisms of metformin's role in cancer immunity are not fully understood. Here, we show that metformin increases CTL activity by reducing the stability and membrane localization of programmed death ligand-1 (PD-L1). Furthermore, we discover that AMP-activated protein kinase (AMPK) activated by metformin directly phosphorylates S195 of PD-L1. S195 phosphorylation induces abnormal PD-L1 glycosylation, resulting in its ER accumulation and ER-associated protein degradation (ERAD). Consistently, tumor tissues from metformin-treated breast cancer patients exhibit reduced PD-L1 levels with AMPK activation. Blocking the inhibitory signal of PD-L1 by metformin enhances CTL activity against cancer cells. Our findings identify a new regulatory mechanism of PD-L1 expression through the ERAD pathway and suggest that the metformin-CTLA4 blockade combination has the potential to increase the efficacy of immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/genética , Antígeno CTLA-4/genética , Regulação Neoplásica da Expressão Gênica , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/imunologia , Animais , Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Glicosilação , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos NOD , Fosforilação , Serina/metabolismo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
12.
Proc Natl Acad Sci U S A ; 120(5): e2216891120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689654

RESUMO

Overfishing is the most significant threat facing sharks and rays. Given the growth in consumption of seafood, combined with the compounding effects of habitat loss, climate change, and pollution, there is a need to identify recovery paths, particularly in poorly managed and poorly monitored fisheries. Here, we document conservation through fisheries management success for 11 coastal sharks in US waters by comparing population trends through a Bayesian state-space model before and after the implementation of the 1993 Fisheries Management Plan for Sharks. We took advantage of the spatial and temporal gradients in fishing exposure and fisheries management in the Western Atlantic to analyze the effect on the Red List status of all 26 wide-ranging coastal sharks and rays. We show that extinction risk was greater where fishing pressure was higher, but this was offset by the strength of management engagement (indicated by strength of National and Regional Plan of Action for sharks and rays). The regional Red List Index (which tracks changes in extinction risk through time) declined in all regions until the 1980s but then improved in the North and Central Atlantic such that the average extinction risk is currently half that in the Southwest. Many sharks and rays are wide ranging, and successful fisheries management in one country can be undone by poorly regulated or unregulated fishing elsewhere. Our study underscores that well-enforced, science-based management of carefully monitored fisheries can achieve conservation success, even for slow-growing species.


Assuntos
Tubarões , Animais , Conservação dos Recursos Naturais , Teorema de Bayes , Pesqueiros , Ecossistema
13.
Proc Natl Acad Sci U S A ; 120(21): e2302584120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186866

RESUMO

Mutations in the TMEM260 gene cause structural heart defects and renal anomalies syndrome, but the function of the encoded protein remains unknown. We previously reported wide occurrence of O-mannose glycans on extracellular immunoglobulin, plexin, transcription factor (IPT) domains found in the hepatocyte growth factor receptor (cMET), macrophage-stimulating protein receptor (RON), and plexin receptors, and further demonstrated that two known protein O-mannosylation systems orchestrated by the POMT1/2 and transmembrane and tetratricopeptide repeat-containing proteins 1-4 gene families were not required for glycosylation of these IPT domains. Here, we report that the TMEM260 gene encodes an ER-located protein O-mannosyltransferase that selectively glycosylates IPT domains. We demonstrate that disease-causing TMEM260 mutations impair O-mannosylation of IPT domains and that TMEM260 knockout in cells results in receptor maturation defects and abnormal growth of 3D cell models. Thus, our study identifies the third protein-specific O-mannosylation pathway in mammals and demonstrates that O-mannosylation of IPT domains serves critical functions during epithelial morphogenesis. Our findings add a new glycosylation pathway and gene to a growing group of congenital disorders of glycosylation.


Assuntos
Manose , Manosiltransferases , Animais , Glicosilação , Mamíferos/metabolismo , Manose/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo
14.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586884

RESUMO

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Assuntos
Farmacologia Clínica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte , Ligantes
15.
J Biol Chem ; 300(8): 107569, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009342

RESUMO

Loss of glycogen myophosphorylase (PYGM) expression results in an inability to break down muscle glycogen, leading to McArdle disease-an autosomal recessive metabolic disorder characterized by exercise intolerance and muscle cramps. While previously considered relatively benign, this condition has recently been associated with pattern dystrophy in the retina, accompanied by variable sight impairment, secondary to retinal pigment epithelial (RPE) cell involvement. However, the pathomechanism of this condition remains unclear. In this study, we generated a PYGM-null induced pluripotent stem cell line and differentiated it into mature RPE to examine structural and functional defects, along with metabolite release into apical and basal media. Mutant RPE exhibited normal photoreceptor outer segment phagocytosis but displayed elevated glycogen levels, reduced transepithelial resistance, and increased cytokine secretion across the epithelial layer compared to isogenic WT controls. Additionally, decreased expression of the visual cycle component, RDH11, encoding 11-cis-retinol dehydrogenase, was observed in PYGM-null RPE. While glycolytic flux and oxidative phosphorylation levels in PYGM-null RPE were near normal, the basal oxygen consumption rate was increased. Oxygen consumption rate in response to physiological levels of lactate was significantly greater in WT than PYGM-null RPE. Inefficient lactate utilization by mutant RPE resulted in higher glucose dependence and increased glucose uptake from the apical medium in the presence of lactate, suggesting a reduced capacity to spare glucose for photoreceptor use. Metabolic tracing confirmed slower 13C-lactate utilization by PYGM-null RPE. These findings have key implications for retinal health since they likely underlie the vision impairment in individuals with McArdle disease.

16.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37552066

RESUMO

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Assuntos
Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Criança , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caenorhabditis elegans/metabolismo , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Megalencefalia/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
17.
Nat Mater ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043927

RESUMO

Solar energy is the fastest-growing source of electricity generation globally. As deployment increases, photovoltaic (PV) panels need to be produced sustainably. Therefore, the resource utilization rate and the rate at which those resources become available in the environment must be in equilibrium while maintaining the well-being of people and nature. Metal halide perovskite (MHP) semiconductors could revolutionize PV technology due to high efficiency, readily available/accessible materials and low-cost production. Here we outline how MHP-PV panels could scale a sustainable supply chain while appreciably contributing to a global renewable energy transition. We evaluate the critical material concerns, embodied energy, carbon impacts and circular supply chain processes of MHP-PVs. The research community is in an influential position to prioritize research efforts in reliability, recycling and remanufacturing to make MHP-PVs one of the most sustainable energy sources on the market.

18.
Blood ; 141(16): 1990-2002, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36652668

RESUMO

Human hematopoietic stem cells (HSCs), like their counterparts in mice, comprise a functionally and molecularly heterogeneous population of cells throughout life that collectively maintain required outputs of mature blood cells under homeostatic conditions. In both species, an early developmental change in the HSC population involves a postnatal switch from a state in which most of these cells exist in a rapidly cycling state and maintain a high self-renewal potential to a state in which the majority of cells are in a quiescent state with an overall reduced self-renewal potential. However, despite the well-established growth factor dependence of HSC proliferation, whether and how this mechanism of HSC regulation might be affected by aging has remained poorly understood. To address this knowledge gap, we isolated highly HSC-enriched CD34+CD38-CD45RA-CD90+CD49f+ (CD49f+) cells from cord blood, adult bone marrow, and mobilized peripheral blood samples obtained from normal humans spanning 7 decades of age and then measured their functional and molecular responses to growth factor stimulation in vitro and their regenerative activity in vivo in mice that had undergone transplantation. Initial experiments revealed that advancing donor age was accompanied by a significant and progressively delayed proliferative response but not the altered mature cell outputs seen in normal older individuals. Importantly, subsequent dose-response analyses revealed an age-associated reduction in the growth factor-stimulated proliferation of CD49f+ cells mediated by reduced activation of AKT and altered cell cycle entry and progression. These findings identify a new intrinsic, pervasive, and progressive aging-related alteration in the biological and signaling mechanisms required to drive the proliferation of very primitive, normal human hematopoietic cells.


Assuntos
Células-Tronco Hematopoéticas , Mitógenos , Adulto , Humanos , Animais , Camundongos , Integrina alfa6/metabolismo , Mitógenos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Ciclo Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
20.
Proc Natl Acad Sci U S A ; 119(17): e2120015119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446705

RESUMO

Uncertainty about the influence of anthropogenic radiative forcing on the position and strength of convective rainfall in the Intertropical Convergence Zone (ITCZ) inhibits our ability to project future tropical hydroclimate change in a warmer world. Paleoclimatic and modeling data inform on the timescales and mechanisms of ITCZ variability; yet a comprehensive, long-term perspective remains elusive. Here, we quantify the evolution of neotropical hydroclimate over the preindustrial past millennium (850 to 1850 CE) using a synthesis of 48 paleo-records, accounting for uncertainties in paleo-archive age models. We show that an interhemispheric pattern of precipitation antiphasing occurred on multicentury timescales in response to changes in natural radiative forcing. The conventionally defined "Little Ice Age" (1450 to 1850 CE) was marked by a clear shift toward wetter conditions in the southern neotropics and a less distinct and spatiotemporally complex transition toward drier conditions in the northern neotropics. This pattern of hydroclimatic change is consistent with results from climate model simulations indicating that a relative cooling of the Northern Hemisphere caused a southward shift in the thermal equator across the Atlantic basin and a southerly displacement of the ITCZ in the tropical Americas, with volcanic forcing as the principal driver. These findings are at odds with proxy-based reconstructions of ITCZ behavior in the western Pacific basin, where changes in ITCZ width and intensity, rather than mean position, appear to have driven hydroclimate transitions over the last millennium. This reinforces the idea that ITCZ responses to external forcing are region specific, complicating projections of the tropical precipitation response to global warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA